Scopus
Permanent URI for this collectionhttp://65.108.157.135:4000/handle/123456789/10
Browse
Browsing Scopus by Author "Acikgoz, Sabriye"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 6Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method(Springer, 2014) Acikgoz, Sabriye; Demir, Mustafa M.; Yapasan, Ece; Kiraz, Alper; Unal, Ahmet A.; Inci, M. Naci; Demir, MustafaThe decay dynamics of perylene dye molecules encapsulated in polymer nanofibers produced by electrospinning of polymethyl methacrylate are investigated using a confocal fluorescence lifetime imaging microscopy technique. Time-resolved experiments show that the fluorescence lifetime of perylene dye molecules is enhanced when the dye molecules are encapsulated in a three-dimensional photonic environment. It is hard to produce a sustainable host with exactly the same dimensions all the time during fabrication to accommodate dye molecules for enhancement of spontaneous emission rate. The electrospinning method allows us to have a control over fiber diameter. It is observed that the wavelength of monomer excitation of perylene dye molecules is too short to cause enhancement within nanofiber photonic environment of 330 nm diameters. However, when these nanofibers are doped with more concentrated perylene, in addition to monomer excitation, an excimer excitation is generated. This causes observation of the Purcell effect in the three-dimensional nanocylindrical photonic fiber geometry.Article Citation Count: 19Use of polyethylene glycol coatings for optical fibre humidity sensing(Optical Soc Japan, 2008) Acikgoz, Sabriye; Bilen, Bukem; Demir, Mustafa Muamer; Menceloglu, Yusuf Ziya; Skarlatos, Yani; Aktas, Gulen; Inci, Mehmet NaciHumidity induced change in the refractive index and thickness of the polyethylene glycol (PEG) coatings are in situ investigated for a range from 10 to 95%, using an optical waveguide spectroscopic technique. It is experimentally demonstrated that, upon humidity change, the optical and swelling characteristics of the PEG coatings can be employed to build a plastic fibre optic humidity sensor. The sensing mechanism is based on the humidity induced change in the refractive index of the PEG film, which is directly coated onto a polished segment of a plastic optical fibre with dip-coating method. It is observed that PEG, which is a highly hydrophilic material, shows no monotonic linear response to humidity but gives different characteristics for various ranges of humidity levels both in index of refraction and in thickness. It undergoes a physical phase change from a semi-crystal line structure to a gel one at around 80% relative humidity. At this phase change point, a drastic decrease occurs in the index of refraction as well as a drastic increase in the swelling of the PEG film. In addition, PEG coatings are hydrogenated in a vacuum chamber. It is observed that the hydrogen has a preventing effect on the humidity induced phase change in PEG coatings. Finally, the possibility of using PEG coatings in construction of a real plastic fibre optic humidity sensor is discussed. (C) 2008 The Optical Society of Japan.