Scopus
Permanent URI for this collectionhttp://65.108.157.135:4000/handle/123456789/10
Browse
Browsing Scopus by Author "Akbali B."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 64CsPbBr3 perovskites: Theoretical and experimental investigation on water-assisted transition from nanowire formation to degradation(American Physical Society, 2018) Akbali B.; Topcu G.; Guner T.; Ozcan M.; Demir M.M.; Sahin, H.Recent advances in colloidal synthesis methods have led to an increased research focus on halide perovskites. Due to the highly ionic crystal structure of perovskite materials, a stability issue pops up, especially against polar solvents such as water. In this study, we investigate water-driven structural evolution of CsPbBr3 by performing experiments and state-of-the-art first-principles calculations. It is seen that while an optical image shows the gradual degradation of the yellowish CsPbBr3 structure under daylight, UV illumination reveals that the degradation of crystals takes place in two steps: transition from a blue-emitting to green-emitting structure and and then a transition from a green-emitting phase to complete degradation. We found that as-synthesized CsPbBr3 nanowires (NWs) emit blue light under a 254 nm UV source. Before the degradation, first, CsPbBr3 NWs undergo a water-driven structural transition to form large bundles. It is also seen that formation of such bundles provides longer-term environmental stability. In addition theoretical calculations revealed the strength of the interaction of water molecules with ligands and surfaces of CsPbBr3 and provide an atomistic-level explanation to a transition from ligand-covered NWs to bundle formation. Further interaction of green-light-emitting bundles with water causes complete degradation of CsPbBr3 and the photoluminescence signal is entirely quenched. Moreover, Raman and x-ray-diffraction measurements revealed that completely degraded regions are decomposed to PbBr2 and CsBr precursors. We believe that the findings of this study may provide further insight into the degradation mechanism of CsPbBr3 perovskite by water. © 2018 American Physical Society.Article Citation Count: 15Monitoring the doping and diffusion characteristics of Mn dopants in cesium lead halide perovskites(American Chemical Society, 2018) Guner T.; Akbali B.; Ozcan M.; Topcu G.; Demir M.M.; Sahin, H.Cesium lead perovskites, in the form of CsPbX3 or Cs4PbX6, have been widely used for various optoelectronic applications due to their exceptionally good optical properties. In this study, the effect of Mn doping on the structural and optical properties of cesium lead halide perovskite crystals are investigated from both experimental and theoretical points of view. It is found that adding MnCl2 during the synthesis not only leads to a Mn-driven structural phase transition from Cs4PbBr6 to CsPbCl3 but also triggers the Br- to Cl- halide exchange. On the other hand, it is observed that, under UV illumination, the color of Mn-doped crystals changes from orange to blue in approximately 195 h. While the intensity of Mn-originated photoluminescence emission exponentially decays in time, the intensity of CsPbCl3-originated emission remains unchanged. In addition, diffusive motion of Mn ions results in both a growing population of MnO2 at the surface and transition of the host into a cesium-rich Cs4PbCl6 phase. © 2018 American Chemical Society.