Browsing by Author "Demirkurt M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Development of molecularly imprinted polymers (MIPs) as a solid phase extraction (SPE) sorbent for the determination of ibuprofen in water(Royal Society of Chemistry, 2017) Olcer Y.A.; Demirkurt M.; Demir M.M.; Eroglu, A.E.Ibuprofen is a well-known endocrine disrupter. In this study, highly selective molecularly imprinted polymers (MIPs) with different morphologies were synthesized via precipitation and bulk polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) in the presence of ibuprofen as a template. Non-imprinted polymers (NIPs) were also synthesized via the same procedure in the absence of ibuprofen. Spherical and monolithic MIPs were obtained using different experimental conditions, and the spherical MIP was shown to have better sorption towards ibuprofen. The optimum sample pH, sorbent amount, sample volume, and sorption time were determined to be 8.0, 25.0 mg, 10.0 mL, and 30.0 min, respectively. A methanol water mixture (MeOH:H2O, 80:20, pH 3.0) was employed as an eluent with >97% (±0.8, n = 3) desorption. The MIP demonstrated high selectivity towards ibuprofen in the presence of naproxen and ketoprofen. The validity of the proposed method was checked via spike recovery tests using drinking and tap water samples. The method worked efficiently for both water types, resulting in the recoveries of 97.2% (±0.3, n = 3) and 97.7% (±0.2, n = 3). © 2017 The Royal Society of Chemistry.Article Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives(Elsevier B.V., 2018) Demirkurt M.; Olcer Y.A.; Demir M.M.; Eroglu, A.E.Parabens are used as antimicrobial preservatives in food, cosmetic products and pharmaceuticals regardless of their endocrine disrupting effect. In this study, highly selective molecular imprinted polymers (MIPs) were synthesized in submicron-sizes and converted to an SPME fiber coating through electrospinning process in order to determine parabens in water samples. Conversion of MIP to a fiber is achieved via creation of spacial knitting around MIP by polystyrene. The selectivity and extraction ability of the fibers were compared with the commercial fibers and the corresponding non-imprinted polymer (NIP) coated fiber. The coated fiber showed better extraction ability among them. Also, the results revealed that the fiber has better selectivity for benzyl paraben and the other structurally-related compounds, such as methyl and propyl paraben. Extraction efficiency of prepared fibers for three parabens has been tested by spiking bottled, tap and sea water samples. The recoveries changed between 92.2 ± 0.8 and 99.8 ± 0.1 for three different water types. This method could be used for selective and sensitive determination of parabens in aqueous samples. © 2018 Elsevier B.V.

