Browsing by Author "Gunduz, Cumhur"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Conference Object Citation Count: 0Autophagic and Apoptotic Effects of Tyrosine Kinase Inhibitors in Myeloid Leukemia: Comparison of Three Generation(Amer Soc Hematology, 2012) Kayabasi, Cagla; Avci, Cigir Biray; Susluer, Sunde Yilmaz; Balci, Tugce; Baran, Yusuf; Saydam, Guray; Gunduz, Cumhur; Baran, Yusuf[No Abstract Available]Article Citation Count: 25Caffeic acid phenethyl ester triggers apoptosis through induction of loss of mitochondrial membrane potential in CCRF-CEM cells(Springer, 2011) Avci, Cigir Biray; Gunduz, Cumhur; Baran, Yusuf; Sahin, Fahri; Yilmaz, Sunde; Dogan, Zeynep Ozlem; Saydam, Guray; Baran, YusufCAPE (caffeic acid phenethyl ester) is one of the most valuable and investigated component of propolis which is composed by honeybees. In the current study, we aimed at examining apoptotic effects of CAPE on CCRF-CEM leukemic cells and at determining the roles of mitochondrial membrane potential (MMP) in cell death. Trypan blue and XTT methods were used to evaluate the cytotoxicity. Apoptosis was examined by ELISA-based oligonucleotide and acridine orange/ethidium bromide dye techniques. Loss of mitochondrial membrane potential was evaluated using JC-1 dye by flow cytometric analysis and under fluorescent microscope. We detected the time- and dose-dependent increases in cytotoxic effect of CAPE on CCRF-CEM cells. ELISA and acridine orange/ethidium bromide results showed that apoptotic cell population increased significantly in CCRF-CEM cells exposed to increasing concentrations of CAPE. On the other hand, there was significant loss of MMP determined in response to CAPE in CCRF-CEM cells. This in vitro data by being supported with clinical data may open the way of the potential use of CAPE for the treatment of leukemia.Article Citation Count: 0Investigating the potential therapeutic role of targeting STAT3 for overcoming drug resistance by regulating energy metabolism in chronic myeloid leukemia cells(Mashhad Univ Med Sciences, 2022) Kaymaz, Burcin Tezcanli; Gunel, Nur Selvi; Sogutlu, Fatma; Ay, Neslihan Pinar Ozates; Baran, Yusuf; Gunduz, Cumhur; Avci, Cigir Biray; Baran, YusufObjective(s): STATs are one of the initial targets of emerging anti-cancer agents due to their regulatory roles in survival, apoptosis, drug response, and cellular metabolism in CML. Aberrant STAT3 activity promotes malignancy, and acts as a metabolic switcher in cancer cell metabolism, contributing to resistance to TKI nilotinib. To investigate the possible therapeutic effects of targeting STAT3 to overcome nilotinib resistance by evaluating various cellular responses in both sensitive and nilotinib resistant CML cells and to test the hypothesis that energy metabolism modulation could be a mechanism for re-sensitization to nilotinib in resistant cells. Materials and Methods: By using RNAi-mediated STAT3 gene silencing, cell viability and proliferation assays, apoptotic analysis, expressional regulations of STAT mRNA transcripts, STAT3 total, pTyr705, pSer727 protein expression levels, and metabolic activity as energy metabolism was determined in CML model K562 cells, in vitro. Results: Targeting STAT3 sensitized both parental and especially nilotinib resistant cells by decreasing leukemic cell survival; inducing leukemic cell apoptosis, and decreasing STAT3 mRNA and protein expression levels. Besides, cell energy phenotype was modulated by switching energy metabolism from aerobic glycolysis to mitochondrial respiration in resistant cells. RNAi-mediated STAT3 silencing accelerated the sensitization of leukemia cells to nilotinib treatment, and STAT3-dependent energy metabolism regulation could be another underlying mechanism for regaining nilotinib response. Conclusion: Targeting STAT3 is an efficient strategy for improving the development of novel CML therapeutics for regaining nilotinib response, and re-sensitization of resistant cells could be mediated by induced apoptosis and regulation in energy metabolism.Article Citation Count: 29Quercetin-induced apoptosis involves increased hTERT enzyme activity of leukemic cells(Taylor & Francis Ltd, 2011) Avci, Cigir Biray; Yilmaz, Sunde; Dogan, Zeynep Ozlem; Saydam, Guray; Dodurga, Yavuz; Ekiz, Huseyin Atakan; Gunduz, CumhurWe aimed to examine the growth suppressive effects of quercetin on acute promyelocytic and lymphoblastic leukemia and chronic myeloid leukemia, and to find out whether the growth suppression is related to the blocking of telomerase enzyme activity. Cytotoxic effects of quercetin were shown by trypan blue analyses. Apoptotic effects of quercetin were examined by acridine orange and ethidium bromide staining by fluorescence microscopy. The effects of quercetin on telomerase enzyme activity were shown by hTERT Quantification Kit. Our results demonstrated that quercetin has antiproliferative and apoptotic effects on T-cell acute lymphoblastic leukemia (ALL), acute promyelocytic leukemia, and chronic myeloid leukemia (CML) cells. We also showed for the first time by this study that quercetin suppresses the activity of telomerase in ALL and CML cells. The results of this study show the importance of quercetin for its therapeutic potential in treatment of leukemias.Article Citation Count: 16Suppression of STAT5A and STAT5B chronic myeloid leukemia cells via siRNA and antisense-oligonucleotide applications with the induction of apoptosis(E-century Publishing Corp, 2013) Kaymaz, Burcin Tezcanli; Selvi, Nur; Gokbulut, Aysun Adan; Aktan, Cagdas; Gunduz, Cumhur; Saydam, Guray; Kosova, BuketSignal transducers and activators of transcription ( STAT) proteins function in the JAK/STAT signaling pathway and are activated by phosphorylation. As a result of this signaling event, they affect many cellular processes including cell growth, proliferation, differentiation, and survival. Increases in the expressions of STAT5A and STAT5B play a remarkable role in the development of leukemia in which leukemic cells gain uncontrolled proliferation and angiogenesis ability. At the same time, these cells acquire ability to escape from apoptosis and host immune system. In this study, we aimed to suppress STAT-5A and -5B genes in K562 CML cells by siRNA transfection and antisense oligonucleotides (ODN) targeting and then to evaluate apoptosis rate. Finally, we compared the transfection efficiencies of these approaches. Quantitative RT-PCR and Western blot results indicated that STAT expressions were downregulated at both mRNA and protein levels following siRNA transfection. However, electroporation mediated ODN transfection could only provide limited suppression rates at mRNA and protein levels. Moreover, it was displayed that apoptosis were significantly induced in siRNA treated leukemic cells as compared to ODN treated cells. As a conclusion, siRNA applications were found to be more effective in terms of gene silencing when compared to ODN treatment based on the higher apoptosis and mRNA suppression rates. siRNA application could be a new and alternative curative method as a supporting therapy in CML patients.