Browsing by Author "Kangal, Serkan"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article Citation - WoS: 3Citation - Scopus: 3A Comprehensive Study on Burst Pressure Performance of Aluminum Liner for Hydrogen Storage Vessels(Asme, 2021) Kangal, Serkan; Say, A. Harun; Ayakda, Ozan; Kartav, Osman; Aydin, Levent; Artem, H. Secil; Beylergil, BertanThis paper presents a comparative study on the burst pressure performance of aluminum (Al) liner for type-III composite overwrapped pressure vessels (COPVs). In the analysis, the vessels were loaded with increasing internal pressure up to the burst pressure level. In the analytical part of the study, the burst pressure of the cylindrical part was predicted based on the modified von Mises, Tresca, and average shear stress criterion (ASSC). In the numerical analysis, a finite element (FE) model was established in order to predict the behavior of the vessel as a function of increasing internal pressure and determine the final burst. The Al pressure vessels made of Al-6061-T6 alloy with a capacity of 5 L were designed. The manufacturing of the metallic vessels was purchased from a metal forming company. The experimental study was conducted by pressurizing the Al vessels until the burst failure occurred. The radial and axial strain behaviors were monitored at various locations on the vessels during loading. The results obtained through analytical, numerical, and experimental work were compared. The average experimental burst pressure of the vessels was found to be 279 bar. The experimental strain data were compared with the results of the FE analysis. The results indicated that the FE analysis and ASSC-based elastoplastic analytical approaches yielded the best predictions which are within 2.2% of the experimental burst failure values. It was also found that the elastic analysis underestimated the burst failure results; however, it was effective for determining the critical regions over the vessel structure. The strain behavior of the vessels obtained through experimental investigations was well correlated with those predicted through FE analysis.Article Citation - WoS: 21Citation - Scopus: 22Development and analysis of composite overwrapped pressure vessels for hydrogen storage(Sage Publications Ltd, 2021) Kartav, Osman; Kangal, Serkan; Yuceturk, Kutay; Tanoglu, Metin; Aktas, Engin; Artem, H. Secil; Tanoğlu, MetinIn this study, composite overwrapped pressure vessels (COPVs) for high-pressure hydrogen storage were designed, modeled by finite element (FE) method, manufactured by filament winding technique and tested for burst pressure. Aluminum 6061-T6 was selected as a metallic liner material. Epoxy impregnated carbon filaments were overwrapped over the liner with a winding angle of +/- 14 degrees to obtain fully overwrapped composite reinforced vessels with non-identical front and back dome layers. The COPVs were loaded with increasing internal pressure up to the burst pressure level. During loading, deformation of the vessels was measured locally with strain gauges. The mechanical performances of COPVs designed with various number of helical, hoop and doily layers were investigated by both experimental and numerical methods. In numerical method, FE analysis containing a simple progressive damage model available in ANSYS software package for the composite section was performed. The results revealed that the FE model provides a good correlation as compared to experimental strain results for the developed COPVs. The burst pressure test results showed that integration of doily layers to the filament winding process resulted with an improvement of the COPVs performance.Master Thesis Development of radar-absorbing composite structures(Izmir Institute of Technology, 2013) Kangal, Serkan; Tanoğlu, Metin; Tanoğlu, MetinRadar absorbing materials (RAMs) are dielectric or magnetic materials that has capacity for absorbing electromagnetic waves. In order to increase frequency range (bandwidth) of the absorbance, several structures have been already proposed by several researchers. Objective of this study is to design, fabricate and characterize RAMs based on glass fiber reinforced epoxy composites within 2-18 GHz frequency range. For achieving radar wave absorbance, several structures such as Dallenbach layer, Salisbury screen and Jaumann absorber were designed and manufactured from polymeric composites. Glass fiber / epoxy system were employed as a base structure. Carbonyl Iron based powders were used as a filler for electromagnetic wave absorber in epoxy matrix. In Salisbury screens and Jaumann absorbers resistive sheets are used to increase the bandwidth of absorbance. Glass fabric surfaces were cotaed with thin layer of metallica conductor with surface resistances up to 1000 ï — to act as a resistive layers within the composite structure. Coatings were done by a large scale magnetron sputtering unit. Resulting structures achieve 12 dB reflection loss with thicknesses varies from 2.65 to 3.15 mm and the resonant frequency detected as 7 GHz. Since in many applications composites are implemented into vehicles and structures such as aircraft wings and wind turbine blades, the purpose of Radar Absorbing Sturctures (RAS) is not only increase the bandwidth of absorbance, but also to serve as a structural element in which. For this reason, structural and physical performance of RAMs has been one of great importance. In this study, mechanical and thermomechanical properties of developed RAMs were also characterized to evaluate the structural performances. It is observed that, addition of carbonyl iron affected the mechanical properties due to lack of binding with epoxy matrix. This effect can be clearly seen at tensile and impact properties that up to 30% losses were observed.Article Citation - WoS: 31Citation - Scopus: 29Investigation of interlayer hybridization effect on burst pressure performance of composite overwrapped pressure vessels with load-sharing metallic liner(Sage Publications Ltd, 2020) Kangal, Serkan; Kartav, Osman; Tanoglu, Metin; Aktas, Engin; Artem, H. Secil; Tanoğlu, MetinIn this study, multi-layered composite overwrapped pressure vessels for high-pressure gaseous storage were designed, modeled by finite element method and manufactured by filament winding technique. 34CrMo4 steel was selected as a load-sharing metallic liner. Glass and carbon filaments were overwrapped on the liner with a winding angle of [+/- 11 degrees/90 degrees(2)](3) to obtain fully overwrapped composite reinforced vessel with non-identical front and back dome endings. The vessels were loaded with increasing internal pressure up to the burst pressure level. The mechanical performances of pressure vessels, (i) fully overwrapped with glass fibers and (ii) with additional two carbon hoop layers on the cylindrical section, were investigated by both experimental and numerical approaches. In numerical approaches, finite element analysis was performed featuring a simple progressive damage model available in ANSYS software package for the composite section. The metal liner was modeled as elastic-plastic material. The results reveal that the finite element model provides a good correlation between experimental and numerical strain results for the vessels, together with the indication of the positive effect on radial deformation of the COPVs due to the composite interlayer hybridization. The constructed model was also able to predict experimental burst pressures within a range of 8%. However, the experimental and finite element analysis results showed that hybridization of hoop layers did not have any significant impact on the burst pressure performance of the vessels. This finding was attributed to the change of load-sharing capacity of composite layers due to the stiffness difference of carbon and glass fibers.Article Citation - WoS: 31Citation - Scopus: 29Investigation of interlayer hybridization effect on burst pressure performance of composite overwrapped pressure vessels with load-sharing metallic liner(Sage Publications Ltd, 2020) Kangal, Serkan; Kartav, Osman; Tanoglu, Metin; Aktas, Engin; Artem, H. Secil; Tanoğlu, MetinIn this study, multi-layered composite overwrapped pressure vessels for high-pressure gaseous storage were designed, modeled by finite element method and manufactured by filament winding technique. 34CrMo4 steel was selected as a load-sharing metallic liner. Glass and carbon filaments were overwrapped on the liner with a winding angle of [+/- 11 degrees/90 degrees(2)](3) to obtain fully overwrapped composite reinforced vessel with non-identical front and back dome endings. The vessels were loaded with increasing internal pressure up to the burst pressure level. The mechanical performances of pressure vessels, (i) fully overwrapped with glass fibers and (ii) with additional two carbon hoop layers on the cylindrical section, were investigated by both experimental and numerical approaches. In numerical approaches, finite element analysis was performed featuring a simple progressive damage model available in ANSYS software package for the composite section. The metal liner was modeled as elastic-plastic material. The results reveal that the finite element model provides a good correlation between experimental and numerical strain results for the vessels, together with the indication of the positive effect on radial deformation of the COPVs due to the composite interlayer hybridization. The constructed model was also able to predict experimental burst pressures within a range of 8%. However, the experimental and finite element analysis results showed that hybridization of hoop layers did not have any significant impact on the burst pressure performance of the vessels. This finding was attributed to the change of load-sharing capacity of composite layers due to the stiffness difference of carbon and glass fibers.Doctoral Thesis Modeling, simulation and analysis of type-III composite overwrapped pressure vessels for high-pressure gas storage(Izmir Institute of Technology, 2019-07) Kangal, Serkan; Tanoğlu, Metin; Tanoğlu, MetinIn this thesis, multi-layered composite overwrapped pressure vessels (COPVs) for high-pressure gaseous storage were modeled by finite element (FE) method and manufactured by filament winding technique. Two liners with distinct geometries were utilized for containing gas and forming a basis for composite filament winding. 34CrMo4 steel as a load-sharing metallic liner was selected for investigation of hybridization effects. Glass and carbon filaments were overwrapped to the liner with a winding angle of [±11°/90°2]3 to obtain a fully overwrapped composite reinforced vessel with non-identical front and back dome endings. The other type of liner was made of Al 6061-T6 and chosen for containing high-pressure gas such as hydrogen and its better strength-to-weight ratio suitable for onboard applications. Doily layers were implemented to the structure for inducing safe burst modes and increasing the burst pressure of the aluminum-based COPVs. All vessels were hydrostatically loaded with increasing internal pressure up to the burst pressure. The mechanical performances of pressure vessels were investigated by both experimental and numerical approaches. In numerical approaches, FE analysis was performed featuring a simple progressive damage model available in ANSYS for composite section. The metal liners were modeled as elastic-plastic material with two different hardening approaches; bilinear and multilinear hardening. The results from steel based COPV indicate that the FE model provided a good correlation between experimental and numerical strain results for the vessels with indications that the composite interlayer hybridization has positive effects on radial deformation of the COPVs. The constructed model for aluminum-based COPVs was also able to predict experimental burst pressures within a range of 8%.