Browsing by Author "Maaroof, Omar Waleed Najm"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Doctoral Thesis Design of a robot assisted minimally invasive surgical system for pituitary tumor surgery based on safety features(Izmir Institute of Technology, 2020-07) Maaroof, Omar Waleed Najm; Dede, Mehmet İsmet CanThe study is on the designing a robot assisted endonasal endoscopic surgical system; NeuRoboScope, the pituitary tumor resection surgery system. This system comprises a passive and an active arm. The passive arm positions the active arm in the surgery zone while the active arm assists the surgeon by positioning the endoscope during the surgery. The focus of this thesis is the mechanical and control safety features that can be implemented in the system. The safety enhancement methods of robot assisted minimally invasive surgery systems are investigated. Among the seventeen robot assisted endoscope holders, sixteen of them have been implemented in pituitary tumor and sinus surgeries. Safety is the main criterion that advances the progress of these systems and places them in operation rooms. Accordingly, two optimization procedures have been applied during the design of the NeuRoboScope system that have a direct effect on the suggested safety features. A novel optimization technique is proposed by employing a redundancy resolution method. The most suitable fixing point of the passive arm and its first link length is optimized to achieve the maximum manipulability with restrictions imposed by a modified condition number index and impedance of the passive arm. The active arm's partial gravity compensation is studied. Three spiral springs are used as counter-springs as the most compact and lightweight partial gravity compensation method. Particle swarm optimization method is employed for the optimization of the design parameters: spiral spring stiffnesses and preload angles. Consequently, at least 66% of actuator loads are compensated.Master Thesis Self-motion control of kinematically redundant robot manipulators(Izmir Institute of Technology, 2012) Maaroof, Omar Waleed Najm; Dede, Mehmet İsmet CanRedundancy in general provides space for optimization in robotics. Redundancy can be defined as sensor/actuator redundancy or kinematic redundancy. The redundancy considered in this thesis is the kinematic redundancy where the total degrees-of-freedom of the robot is more than the total degrees-of-freedom required for the task to be executed. This provides infinite number of solutions to perform the same task, thus, various subtasks can be carried out during the main-task execution. This work utilizes the property of self-motion for kinematically redundant robot manipulators by designing the general subtask controller that controls the joint motion in the null-space of the Jacobian matrix. The general subtask controller is implemented for various subtasks in this thesis. Minimizing the total joint motion, singularity avoidance, posture optimization for static impact force objectives, which include maximizing/minimizing the static impact force magnitude, and static and moving obstacle (point to point) collision avoidance are the subtasks considered in this thesis. New control architecture is developed to accomplish both the main-task and the previously mentioned subtasks. In this architecture, objective function for each subtask is formed. Then, the gradient of the objective function is used in the subtask controller to execute subtask objective while tracking a given end-effector trajectory. The tracking of the end-effector is called main-task. The SCHUNK LWA4-Arm robot arm with seven degrees-of-freedom is developed first in SolidWorks® as a computer-aided-design (CAD) model. Then, the CAD model is converted to MATLAB® Simulink model using SimMechanics CAD translator to be used in the simulation tests of the controller. Kinematics and dynamics equations of the robot are derived to be used in the controllers. Simulation test results are presented for the kinematically redundant robot manipulator operating in 3D space carrying out the main-task and the selected subtasks for this study. The simulation test results indicate that the developed controller’s performance is successful for all the main-task and subtask objectives.