Browsing by Author "Sahin, Hasan"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article Color-Tunable All-Inorganic CsPbBr3 Perovskites Nanoplatelet Films for Photovoltaic Devices(Amer Chemical Soc, 2019) Ozcan, Mehmet; Ozen, Sercan; Topcu, Gokhan; Demir, Mustafa M.; Sahin, HasanHerein, we demonstrate a novel coating approach to fabricate CsPbBr3 perovskite nanoplatelet film with heat-free process via electrospraying from precursor solution. A detailed study is carried out to determine the effect of various parameters such as ligand concentration, electric field, flow rate, etc. on the optical properties. By controlling the volume ratios of the oleylamine (OAm) and oleic acid (OA), the coalescing and thickness of the resulting nanoplatelets can be readily tuned that results in control over emission in the range of 100 nm without any antisolvent crystallization or heating processes. The varying electrical field and flow rate was found as inefficient on the emission characteristics of the films. In addition, the crystal films were obtained under ambient conditions on the ITO coated glass surfaces as in the desired pattern. As a result, we demonstrated a facile and reproducible way of synthesizing and coating of CsPbBr3 perovskite nanoplatelets which is suitable for large-scale production. In this method, the ability of tuning the degree of quantum confinement for perovskite nanoplatelets is promising approach for the one-step fabrication of crystal films that may enable the use in optoelectronics.Article Experimental modeling of antimony sulfides-rich geothermal deposits and their solubility in the presence of polymeric antiscalants(Pergamon-elsevier Science Ltd, 2022) Karaburun, Emre; Sozen, Yigit; Ciftci, Celal; Sahin, Hasan; Baba, Alper; Akbey, Umit; Demir, Mustafa M.Antimony (Sb)-rich geothermal deposits have been observed in many geothermal power plants worldwide. They occur as red-colored, sulfidic precipitates disturbing energy-harvesting by clogging the geothermal installations. In order to prevent the formation of this scale, information on its physicochemical features is needed. For this purpose, Sb-rich sulfide-based deposits were synthesized at controlled conditions in a pressurized glass reactor at geothermal conditions (135 degrees C and 3.5 bar). Various polymeric antiscalants with different functional groups, such as acrylic acid, sulphonic acid, and phosphonic acid groups were tested for their effect on Sb sulfide solubility. An additional computational study was performed to determine the binding energy of Sb and S atoms to these groups. The results suggest that sulfonic acid groups are the most affective. Therefore, it was concluded that these macromolecule containing sulfonic acid groups and poly (vinyl sulfonic acid) derivatives could potentially act as antiscalants for the formation of antimony sulfide.Article Gd3+-Doped α-CsPbI3 Nanocrystals with Better Phase Stability and Optical Properties(Amer Chemical Soc, 2019) Guvenc, C. Meric; Yalcinkaya, Yenal; Ozen, Sercan; Sahin, Hasan; Demir, Mustafa M.Black alpha-CsPbI3 perovskites are unable to maintain their phase stability under room conditions; hence, the alpha-CsPbI3 phase transforms into a thermodynamically stable yellow delta-CsPbI3 phase within a few days, which has a nonperovskite structure and high band gap for optoelectronic applications. This phase transformation should be prevented or at least retarded to make use of superior properties of alpha-CsPbI3 in optoelectronic applications. In this study, Gd3+ doping was employed with the aim of increasing the stability of alpha-CsPbI3. All doped alpha-CsPbI3 nanocrystals with various levels of Gd3+, between 5 and 15 mol %, have shown greater phase stability than that of the pure alpha-CsPbI3 phase from 5 days up to 11 days under ambient conditions. This prolonged phase stability can be attributed to three potential reasons: increased tolerance factor of the perovskite structure, distorted cubic symmetry, and decreased defect density in nanocrystals. Urbach energy values suggest the reduction of defect density in the doped nanocrystals. Also, use of 10 mol % Gd3+ as a dopant material increases the photoluminescence quantum yield from 70 to 80% and fluorescence lifetime of alpha-CsPbI3 from 47.4 to 64.4 ns. Further, density functional theory calculations are in a good agreement with the experimental results.Article Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3:Eu3+ nanoparticles for white light generation(Beilstein-institut, 2019) Guner, Tugrul; Kus, Anilcan; Ozcan, Mehmet; Genc, Aziz; Sahin, Hasan; Demir, Mustafa M.Phosphors can serve as color conversion layers to generate white light with varying optical features, including color rendering index (CRI), high correlated color temperature (CCT), and luminous efficacy. However, they are typically produced under harsh synthesis conditions such as high temperature, high pressure, and/or by employing a large amount of solvent. In this work, a facile, water-based, rapid method has been proposed to fabricate lanthanide-doped hydroxide-based phosphors. In this sense, sub-micrometer-sized Y(OH)(3):Eu3+ particles (as red phosphor) were synthesized in water at ambient conditions in <= 60 min reaction time. The doping ratio was controlled from 2.5-20 mol %. Additionally, first principle calculations were performed on Y(OH)(3):Eu3+ to understand the preferable doping scenario and its optoelectronic properties. As an application, these fabricated red phosphors were integrated into a PDMS/YAG:Ce3+ composite and used to generate white light. The resulting white light showed a remarkable improvement (approximate to 24%) in terms of luminous efficiency, a slight reduction of CCT (from 3900 to 3600 K), and an unchanged CRI (approximate to 60) as the amount of Y(OH)(3):Eu3+ was increased.Article Increasing solubility of metal silicates by mixed polymeric antiscalants(Pergamon-elsevier Science Ltd, 2019) Topcu, Gokhan; Celik, Asli; Kandemir, Ali; Baba, Alper; Sahin, Hasan; Demir, Mustafa M.The increase of silicate solubility is a big challenge for both hot and cold water because it reduces the deposition of metal silicates frequently observed in such systems and causes operational obstacles. The deposition of silicate coats the inner surface of the pipelines in an uncontrolled manner and reduces the harvesting of energy from brines. In this work, the solubility performance of two commercial water-soluble polymeric agents (poly(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVA)) of various molecular weights employing dosage from 25 to 100 mg/L was examined. Along with dispersant-type antiscalant, poly(acrylamide) (PAM), poly(vinylsulfonic acid, sodium salt) (PVSA), and poly(vinylphosphonic acid) (PVPA) having chelating acidic groups were employed. Metal silicate deposits were obtained artificially in the lab-scale pressurized reactor. The experimental conditions employed were quite similar to a model power plant located in canaldcale, Turkey. The concentration of dissolved silica was increased from 130 to 420 mg/L when 100 mg/L PEG 1500 and 25 mg/L PVSA were employed as a mixture. For the atomic-level understanding of the interaction of chelating groups with metal cations, DFT calculations were performed too.Article Monitoring the Doping and Diffusion Characteristics of Mn Dopants in Cesium Lead Halide Perovskites(Amer Chemical Soc, 2018) Guner, Tugrul; Akbali, Baris; Ozcan, Mehmet; Topcu, Gokhan; Demir, Mustafa M.; Sahin, HasanCesium lead perovskites, in the form of CsPbX3 or Cs4PbX6, have been widely used for various optoelectronic applications due to their exceptionally good optical properties. In this study, the effect of Mn doping on the structural and optical properties of cesium lead halide perovskite crystals are investigated from both experimental and theoretical points of view. It is found that adding MnCl2 during the synthesis not only leads to a Mn-driven structural phase transition from Cs4PbBr6 to CsPbCl3 but also triggers the Br- to Cl- halide exchange. On the other hand, it is observed that, under UV illumination, the color of Mn-doped crystals changes from orange to blue in approximately 195 h. While the intensity of Mn-originated photoluminescence emission exponentially decays in time, the intensity of CsPbCI3-originated emission remains unchanged. In addition, diffusive motion of Mn ions results in both a growing population of MnO2 at the surface and transition of the host into a cesium-rich Cs4PbCl6 phase.

