Browsing by Author "Yetgin, Senem"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Doctoral Thesis DNA adsorption on silica, alumina and hydroxyapatite and imaging of dna by atomic force microscopy(Izmir Institute of Technology, 2013) Yetgin, Senem; Balköse, DevrimThe scope of the study is to investigate calf thymus DNA adsorption process on solid powders such as silica, alumina and hydroxyapatite (HAP) to improve DNA solid phase extraction efficiency and to visiulize DNA adsorption by atomic force microscopy (AFM). The equilibrium and kinetics of the DNA adsorption were investigated in batch adsorption on a commercial silica gel and a synthesized silica aerogel, commercial alumina and HAP powders from aqueous DNA solution. Commercial DNA extraction kit adsorbents were also characterized and used for adsorption. Adsorbed DNA was imaged in ambient air on flat surfaces of mica, silica and alumina wafers and HAP particles coated glass surfaces and a HAP pellet surface by AFM. Effects of ambient air, nitrogen flow and freeze drying methods on DNA morphology on the releted surfaces were also investigated. Adsorption of DNA on silica, alumina and HAP increased with the decrease of pH from 9.0 to 2.0. Enhancements of the adsorption capacities of adsorbents were obtained with the addition of MgCl2. It was found that the Van der Waals and the hydrogen bonds rather than the surface charge were the cause of the adsorption. The adsorption isotherms of DNA on silica, alumina and HAP were fitted to Langmuir model in pH range 2-9. The adsorption kinetics obeyed pseudo second order model. The sharpest image of DNA by AFM was obtained by freeze drying method on alumina surface. Dispersed DNA in water was adsorbed on the surfaces not as single molecules but as supercoils consisting of many molecules.Master Thesis Investigation of fuel oxygenate adsorption on clinoptilolite rich natural zeolite(Izmir Institute of Technology, 2006) Yetgin, Senem; İnal, FikretThe wide use of fuel oxygenates in gasoline as anti-knocking and emission reduction agent have recently led to serious environmental concerns due to their detection in groundwater and surface water. Among the various gasoline additives, methyl tertiary butyl ether (MTBE) and ethyl tertiary butyl ether (ETBE) are the most frequently used fuel oxygenates worldwide. Due to the physical and chemical properties of fuel oxygenates, the conventional treatment technologies are generally ineffective for their removal from contaminated water. Adsorption is a common process frequently used to remove fuel oxygenates from water. The use of natural zeolites as adsorbent have increased significantly because of their availability and low cost. Clinoptilolite is one of the most abundant zeolites in nature, and Turkey has very large clinoptilolite reserves. In this project the adsorption properties of clinoptilolite rich natural zeolites for use in the removal of MTBE and ETBE from water have been investigated using batch equilibrium and fixed-bed column experiments. The adsorption properties have been compared with those of two activated carbons (i.e., Powdered Activated Carbon (PAC) and Granulated Activated Carbon (GAC)). In addition, bisolute (i.e., benzene and oxygenate) adsorption experiments were also carried out to determine the effectiveness of these adsorbents in the presence of other gasoline hydrocarbons. All the experiments were performed at 25 °C with initial oxygenate and benzene concentrations of 2000 ppb and 400 ppb, respectively. In batch equilibrium experiments, it has been found that the powdered and granulated activated carbons had higher adsorption capacities for MTBE and ETBE than clinoptilolite. The highest capacity for the amount of MTBE adsorbed per unit mass of adsorbent was achieved using GAC while that of ETBE was obtained using PAC. The presence of benzene decreased the adsorption capacities of GAC and PAC. However, the effect of benzene was not clear and was dependent on the adsorbent loading for clinoptilolite. In fixed-bed column experiments, GAC and clinoptilolite were tested as adsorbents. The column breakthrough curves for clinoptilolite were steep indicating fast adsorption and narrow mass transfer region. For GAC, mass transfer regions were wider due to the relatively flat breakthrough curves. There was no significant effect of benzene on the breakthrough curves for GAC and clinoptilolite.