TR-Dizin
Permanent URI for this collectionhttp://65.108.157.135:4000/handle/123456789/11
Browse
Browsing TR-Dizin by Publication Category "Diğer"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Review The importance of protein profiling in the diagnosis and treatment of hematologic malignancies(Galenos Yayincilik, 2011) Sanli-Mohamed, Gulsah; Turan, Taylan; Ekiz, Huseyin Atakan; Baran, Yusuf; Baran, YusufProteins are important targets in cancer research because malignancy is associated with defects in cell protein machinery. Protein profiling is an emerging independent subspecialty of proteomics that is rapidly expanding and providing unprecedented insight into biological events. Quantitative assessment of protein levels in hematologic malignancies seeks a comprehensive understanding of leukemia-associated protein patterns for use in aiding diagnosis, follow-up treatment, and the prediction of clinical outcomes. Many recently developed high-throughput proteomic methods can be applied to protein profiling. Herein the importance of protein profiling, its exploitation in leukemia research, and its clinical usefulness in the treatment and diagnosis of various cancer types, and techniques for determining changes in protein profiling are reviewed. (Turk J Hematol 2011; 28: 1-14)Review Multidrug resistance in chronic myeloid leukemia(Tubitak Scientific & Technological Research Council Turkey, 2014) Unlu, Miray; Kiraz, Yagmur; Kaci, Fatma Necmiye; Ozcan, Mehmet Ali; Baran, Yusuf; Baran, YusufChronic myeloid leukemia (CML) is characterized by the accumulation of Philadelphia chromosome-positive (Ph+) myeloid cells. Ph+ cells occur via a reciprocal translocation between the long arms of chromosomes 9 and 22 resulting in constitutively active Bcr-abl fusion protein. Tyrosine kinase inhibitors (TKIs) are used against the kinase activity of Bcr-abl fusion protein for the effective treatment of CML. However, the development of drug resistance, directed by different genetic mechanisms, is the major problem of clinical applications of TKIs. These mechanisms include mutations in the TKI binding site of Bcr-abl, overexpression of Bcr-abl, overexpression of ATP binding cassette transporters, aberrant ceramide metabolism, inhibition of apoptosis, and changes in expression levels of microRNAs. Recently, many studies have focused on understanding the molecular mechanisms of drug resistance in cancer while targeting therapies providing reversal of resistance. Cancer stem cells also have roles in tumor initiation, maintenance, progression, metastasis, and drug resistance. Uncovering the mechanisms of drug resistance can provide more efficient treatment of cancer since these findings may provide novel targets for a complete cure. In this review, we discuss recent findings on the mechanisms of multidrug resistance and its reversal in CML.Review Noncoding RNAs in apoptosis: identification and function(Tubitak Scientific & Technological Research Council Turkey, 2022) Tuncel, Ozge; Kara, Merve; Yaylak, Bilge; Erdogan, Ipek; Akgul, Bunyamin; Akgül, BünyaminApoptosis is a vital cellular process that is critical for the maintenance of homeostasis in health and disease. The derailment of apoptotic mechanisms has severe consequences such as abnormal development, cancer, and neurodegenerative diseases. Thus, there exist complex regulatory mechanisms in eukaryotes to preserve the balance between cell growth and cell death. Initially, protein coding genes were prioritized in the search for such regulatory macromolecules involved in the regulation of apoptosis. However, recent genome annotations and transcriptomics studies have uncovered a plethora of regulatory noncoding RNAs that have the ability to modulate not only apoptosis but also many other biochemical processes in eukaryotes. In this review article, we will cover a brief summary of apoptosis and detection methods followed by an extensive discussion on microRNAs, circular RNAs, and long noncoding RNAs in apoptosis.