WOS
Permanent URI for this collectionhttp://65.108.157.135:4000/handle/123456789/9
Browse
Browsing WOS by Subject "6"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 17Experimental and statistical analysis of carbon fiber/epoxy composites interleaved with nylon 6,6 nonwoven fabric interlayers(Sage Publications Ltd, 2020) Beylergil, Bertan; Tanoglu, Metin; Aktas, Engin; Tanoğlu, MetinThermoplastic interleaving is a promising technique to improve delamination resistance of laminated composites. In this study, plain-weave carbon fiber/epoxy composites were interleaved with nylon 6,6 nonwoven fabrics with an areal weight density of 17 gsm. The carbon fiber/epoxy composite laminates with/without nylon 6,6 nonwoven fabric interlayers were manufactured by VARTM technique. Double cantilever beam fracture toughness tests were carried out on the prepared composite test specimens in accordance with ASTM 5528 standard. The experimental test data were statistically analyzed by two-parameter Weibull distribution. The results showed that the initiation and propagation fracture toughness Mode-I fracture toughness of carbon fiber/epoxy composites could be improved by about 34 and 156% (corresponding to a reliability level of 0.50) with the incorporation of nylon 6,6 interlayers in the interlaminar region, respectively. The results also revealed that the percent increase in the propagation fracture toughness value was 67 and 41% at reliability levels of 0.90 and 0.95, respectively.Article Citation - WoS: 6Citation - Scopus: 6Improving adhesive behavior of fiber reinforced composites by incorporating electrospun Polyamide-6,6 nanofibers in joining region(Sage Publications Ltd, 2022) Esenoglu, Gozde; Barisik, Murat; Tanoglu, Metin; Yeke, Melisa; Turkdogan, Ceren; Iplikci, Hande; Iris, Mehmet Erdem; Tanoğlu, MetinAdhesive joining of fiber reinforced polymer (CFRP) composite components is demanded in various industrial applications. However, the joining locations frequently suffer from adhesive bond failure between adhesive and adherent. The aim of the present study is improving bonding behavior of adhesive joints by electrospun nanofiber coatings on the prepreg surfaces that have been used for composite manufacturing. Secondary bonding of woven and unidirectional CFRP parts was selected since this configuration is preferred commonly in aerospace practices. The optimum nanofiber coating with a low average fiber diameter and areal weight density is succeed by studying various solution concentrations and spinning durations of the polyamide-6.6 (PA 66) electrospinning. We obtained homogeneous and beadles nanofiber productions. As a result, an average diameter of 36.50 +/- 12 nm electrospun nanofibers were obtained and coated onto the prepreg surfaces. Prepreg systems with/without PA 66 nanofibers were hot pressed to fabricate the CFRP composite laminates. The single-lap shear test coupons were prepared from the fabricated laminates to examine the effects of PA 66 nanofibers on the mechanical properties of the joint region of the composites. The single-lap shear test results showed that the bonding strength is improved by about 40% with minimal adhesive use due to the presence of the electrospun nanofibers within the joint region. The optical and SEM images of fractured surfaces showed that nanofiber-coated joints exhibited a coherent failure while the bare surfaces underwent adhesive failure. The PA66 nanofibers created better coupling between the adhesive and the composite surface by increasing the surface area and roughness. As a result, electrospun nanofibers turned adhesive failure into cohesive and enhanced the adhesion performance composite joints substantially.