This is a Demo Server. Data inside this system is only for test purpose.
 

Modal identification of structures by using Bayesian statistics

dc.contributor.advisor Turan, Gürsoy
dc.contributor.author Hızal, Çağlayan
dc.date.accessioned 2023-11-16T12:03:55Z
dc.date.available 2023-11-16T12:03:55Z
dc.date.issued 2019-07 en_US
dc.description Thesis (Doctoral)--Izmir Institute of Technology, Civil Engineering, Izmir, 2019 en_US
dc.description Includes bibliographical references (leaves: 155-160) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description.abstract Bayesian Probabilistic approaches in the health monitoring of civil engineering structures has gained remarkable interest during past decades. When compared to the available Operational Modal Analysis (OMA) methods, Bayesian Operational Modal Analysis (BAYOMA) determines a probabilistic range with a most probable value and uncertainty instead of a certain result. For this reason, the most important difference of BAYOMA lies in its capability of uncertainty quantification. Therefore, the modal parameters of a measured structure can be determined based on a probabilistic logic according to various cases (for example single measurement setup, well separated and/or closely spaced modes, multiple measurement setups). Further, the finite element model of the investigated structure can also be updated by a Bayesian approach incorporated with modal identification procedure. Some efficient BAYOMA methods such as Bayesian Spectral Density Approach (BSDA) and Bayesian Fast Fourier Transform Approach (BFFTA) have been presented by various researchers during the past two decades. Despite their efficient and fast solution procedure, the available methods have some critical issues that need to be solved. Most of these problems especially lie in the quantification of posterior uncertainties and some special cases arise in closely spaced modes and/or multiple setup measurement cases. In the literature, solutions for the aforementioned problems have been also presented by various researchers. In the light of the accumulated knowledge in the literature, this study presents a computational framework for BAYOMA and Bayesian Model Updating (BMU). In addition to some improvements to the available methods, new and alternative approaches are presented for BAYOMA and BMU. According to the results, it is seen that the quality of identified modal parameters and updated finite element models increases significantly by the proposed computational procedure. en_US
dc.description.abstract Bayezyan olsasılıksal yaklaşımları, inşaat mühendisliği yapılarının sağlığının izlemesinde, geçen on yıllar boyunca kayda değer bir ilgi kazanmıştır. Mevcut Operasyonel Modal Analiz (OMA) yöntemleriyle karşılaştırıldığında Bayezyan Operasyonel Modal Analiz (BAYOMA) yöntemleri, belirli bir sonuç yerine en olası değer ve bu değerin belirsizliğini içeren olasılıksal bir aralık belirler. Bu nedenle, BAYOMA'nın en önemli farkı belirsizlikleri tanımlama kabiliyetinde yatmaktadır. Böylece, ölçülen bir yapının modal parametreleri, çeşitli durumlara göre (örneğin tekil ölçüm grubu, iyi ayrılmış ve/veya çakışan modlar, çoklu ölçüm grupları gibi) bir olasılık temelinde belirlenebilir. Ayrıca, incelenen yapının sonlu eleman modeli, modal tanımlama prosedüründen elde edilen sonuçlar kullanılarak, bir Bayezyan yaklaşımıyla da güncellenebilir. Bayezyan Spektral Yoğunluk Yaklaşımı (BSDA) ve Bayezyan Hızlı Fourier Dönüşüm Yaklaşımı (BFFTA) gibi bazı etkili BAYOMA yöntemleri, son yirmi yıl boyunca çeşitli araştırmacılar tarafından sunulmuştur. Etkili ve hızlı çözüm prosedürlerine rağmen, mevcut yöntemlerde üstesinden gelinmesi gereken bazı kritik sorunlar da mevcuttur. Bu sorunların birçoğu, özellikle sonsal (posterior) belirsizliklerin belirlenmesinde yatmakta veya çakışan modlar ya da çoklu ölçüm grupları bulunması gibi bazı özel durumlarda ortaya çıkmaktadır. Literatürde, yukarıda belirtilen sorunlara yönelik çözümler çeşitli araştırmacılar tarafından sunulmuştur. Mevcut bilgiler ışığında, bu çalışma BAYOMA ve Bayezyan Model Güncelleme (BMU) için bir hesap çerçevesi sunmaktadır. Mevcut yöntemlerde bazı iyileştirmelere ek olarak, BAYOMA ve BMU için yeni ve alternatif yaklaşımlar sunulmaktadır. Elde edilen sonuçlara göre, tanılanan modal parametrelerin ve güncellenmiş sonlu eleman modellerinin kalitesinin, önerilen hesap prosedürü ile önemli ölçüde arttığı görülmektedir. en_US
dc.format.extent xv, 160 leaves en_US
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/6136
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Modal analysis en_US
dc.subject Dynamic modelling en_US
dc.subject Optimization problem en_US
dc.subject Bayesian analysis en_US
dc.subject Damage detection en_US
dc.title Modal identification of structures by using Bayesian statistics en_US
dc.title.alternative Yapıların Bayezyan istatistikleri ile modal tanılaması en_US
dc.type Doctoral Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Hızal, Çağlayan
gdc.description.department Civil Engineering en_US
gdc.description.publicationcategory Tez en_US
gdc.oaire.accepatencedate 2019-01-01
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0
gdc.oaire.influence 2.9837197E-9
gdc.oaire.influencealt 0
gdc.oaire.isgreen true
gdc.oaire.keywords İnşaat Mühendisliği
gdc.oaire.keywords Civil Engineering
gdc.oaire.keywords Bayes analysis
gdc.oaire.popularity 2.03792E-9
gdc.oaire.popularityalt 0.0
gdc.oaire.publicfunded false

Files

Collections