This is a Demo Server. Data inside this system is only for test purpose.
 

Convergence analysis and numerical solutions of the Fisher's and Benjamin-Bono-Mahony equations by operator splitting method

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

This thesis is concerned with the operator splitting method for the Fisher’s and Benjamin-Bono-Mahony type equations. We showthat the correct convergence rates inHs(R) space for Lie- Trotter and Strang splitting method which are obtained for these equations. In the proofs, the new framework originally introduced in (Holden, Lubich, and Risebro, 2013) is used. Numerical quadratures and Peano Kernel theorem, which is followed by the differentiation in Banach space are discussed In addition, we discuss the Sobolev space Hs(R) and give several properties of this space. With the help of these subjects, we derive error bounds for the first and second order splitting methods. Finally, we numerically check the convergence rates for the time step ∆t.

Description

Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2014
Includes bibliographical references (leaves: 71-74)
Text in English; Abstract: Turkish and English
ix, 87 leaves

Keywords

Operator equation, Numerical solutions, Matematik, Mathematics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections