This is a Demo Server. Data inside this system is only for test purpose.
 

Semigroup theory and some applications

dc.contributor.advisor Batal, Ahmet
dc.contributor.author Yazan, Tuğba
dc.date.accessioned 2023-11-13T09:55:18Z
dc.date.available 2023-11-13T09:55:18Z
dc.date.issued 2020-07 en_US
dc.description Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2020 en_US
dc.description Includes bibliographical references (leaves: 53-54) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description.abstract n the present thesis, we consider the evolution equation (Cauchy problem) which is the basis for our study. We show how various linear partial differential equations can be transformed into the Cauchy problem form. Solving the Cauchy problem is equivalent to find a family of evolution operators T(t) which sends the initial state of the system to the solution state at a later time t. It turns out that this family of operators T(t) must satisfy some properties which we call semigroup properties. We state the Hille-Yosida and Lumer-Phillips theorems to characterize contraction semigroups. Moreover, we apply these theorems to the heat and wave equations as examples. We also consider strongly continuous operator groups and Stone's theorem. Finally, we give some essential conditions to obtain wellposed evaluation equation and introduce an inhomogeneous Cauchy problem. en_US
dc.description.abstract Bu tezde, çalışmamızın temelini oluşturan ilerleme denklemi (Cauchy problemi) ele alındı. Çeşitli lineer kısmi diferansiyel denklemlerin Cauchy problem formuna nasıl dönüştürülebildiğini gösterdik. Cauchy problemini çözmek, sistemin başlangıç konumunu t zaman sonraki çözüm konumuna götüren T(t) ilerleme operatör ailesi bulmaya eşdeğerdir. Bu T(t) operatörleri ailesinin semigrup özellikleri olarak adlandırdığımız bazı özellikleri karşılaması gerektiği ortaya çıktı. Daralan semigrupları karakterize etmek için Hille-Yosida ve Lumer-Phillips teoremlerini açıkladık. Dahası bu teoremleri örnek olarak ısı ve dalga denklemlerine uyguladık. Ayrıca güçlü sürekli operatör gruplarını ve Stone teoremini de inceledik. Son olarak, iyi tanımlanmış ilerleme denklemini elde etmek ve homojen olmayan Cauchy problemini tanıtmak için bazı temel koşullar sunduk. en_US
dc.format.extent vi, 54 leaves en_US
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/5655
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Semigroups en_US
dc.subject Cauchy problem en_US
dc.subject Hille-Yosida theorem en_US
dc.subject Lumer-Phillips theorem en_US
dc.title Semigroup theory and some applications en_US
dc.title.alternative Semigrup teorisi ve bazı uygulamaları en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.id 0000-0001-9870-3131 en_US
gdc.description.department Mathematics en_US
gdc.description.publicationcategory Tez en_US

Files

Collections