This is a Demo Server. Data inside this system is only for test purpose.
 

Statistical methods used for intrusion detection

No Thumbnail Available

Date

2006

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Computer networks are being attacked everyday. Intrusion detection systems are used to detect and reduce effects of these attacks. Signature based intrusion detection systems can only identify known attacks and are ineffective against novel and unknown attacks. Intrusion detection using anomaly detection aims to detect unknown attacks and there exist algorithms developed for this goal. In this study, performance of five anomaly detection algorithms and a signature based intrusion detection system is demonstrated on synthetic and real data sets. A portion of attacks are detected using Snort and SPADE algorithms. PHAD and other algorithms could not detect considerable portion of the attacks in tests due to lack of sufficiently long enough training data.

Description

Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2006
Includes bibliographical references (leaves: 58-64)
Text in English; Abstract: Turkish and English
x, 71 leaves

Keywords

Computer Engineering and Computer Science and Control, Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals