Strongly noncosingular modules
dc.contributor.advisor | Büyükaşık, Engin | |
dc.contributor.author | Alagöz, Yusuf | |
dc.date.accessioned | 2023-11-13T09:22:31Z | |
dc.date.available | 2023-11-13T09:22:31Z | |
dc.date.issued | 2014 | |
dc.description | Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2014 | en_US |
dc.description | Includes bibliographical references (leaves: 38-39) | en_US |
dc.description | Text in English; Abstract: Turkish and English | en_US |
dc.description | vii, 39 leaves | en_US |
dc.description.abstract | The main purpose of this thesis is to investigate the notion of strongly noncosingular modules. We call a right R-module M strongly noncosingular if for every nonzero right R module N and every nonzero homomorphismf : M → N, Im(f) is not a cosingular (or Radsmall) submodule of N in the sense of Harada. It is proven that (1) A right R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective right R-modules coincides with the class of (strongly) noncosingular right R-modules; (3) a right hereditary ring R is Max-ring if and only if absolutely coneat right R-modules are strongly noncosingular; (4) a commutative ring R is semisimple if and only if the class of injective R-modules coincides with the class of strongly noncosingular R-modules. | en_US |
dc.identifier.uri | http://standard-demo.gcris.com/handle/123456789/3946 | |
dc.language.iso | en | en_US |
dc.publisher | Izmir Institute of Technology | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | R-modules | en_US |
dc.subject.lcsh | Modules (Algebra) | en_US |
dc.subject.lcsh | Rings | en_US |
dc.title | Strongly noncosingular modules | en_US |
dc.title.alternative | Güçlü dual tekil olmayan modüller | en_US |
dc.type | Master Thesis | en_US |
dspace.entity.type | Publication | |
gdc.author.id | TR37080 | en_US |
gdc.author.institutional | Alagöz, Yusuf | |
gdc.description.department | Mathematics | en_US |
gdc.description.publicationcategory | Tez | en_US |
gdc.oaire.accepatencedate | 2014-01-01 | |
gdc.oaire.diamondjournal | false | |
gdc.oaire.impulse | 0 | |
gdc.oaire.influence | 2.9837197E-9 | |
gdc.oaire.influencealt | 0 | |
gdc.oaire.isgreen | true | |
gdc.oaire.keywords | Matematik | |
gdc.oaire.keywords | Mathematics | |
gdc.oaire.popularity | 1.0422565E-9 | |
gdc.oaire.popularityalt | 0.0 | |
gdc.oaire.publicfunded | false |