This is a Demo Server. Data inside this system is only for test purpose.
 

Strongly noncosingular modules

dc.contributor.advisor Büyükaşık, Engin
dc.contributor.author Alagöz, Yusuf
dc.date.accessioned 2023-11-13T09:22:31Z
dc.date.available 2023-11-13T09:22:31Z
dc.date.issued 2014
dc.description Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2014 en_US
dc.description Includes bibliographical references (leaves: 38-39) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description vii, 39 leaves en_US
dc.description.abstract The main purpose of this thesis is to investigate the notion of strongly noncosingular modules. We call a right R-module M strongly noncosingular if for every nonzero right R module N and every nonzero homomorphismf : M → N, Im(f) is not a cosingular (or Radsmall) submodule of N in the sense of Harada. It is proven that (1) A right R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective right R-modules coincides with the class of (strongly) noncosingular right R-modules; (3) a right hereditary ring R is Max-ring if and only if absolutely coneat right R-modules are strongly noncosingular; (4) a commutative ring R is semisimple if and only if the class of injective R-modules coincides with the class of strongly noncosingular R-modules. en_US
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/3946
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject R-modules en_US
dc.subject.lcsh Modules (Algebra) en_US
dc.subject.lcsh Rings en_US
dc.title Strongly noncosingular modules en_US
dc.title.alternative Güçlü dual tekil olmayan modüller en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.id TR37080 en_US
gdc.author.institutional Alagöz, Yusuf
gdc.description.department Mathematics en_US
gdc.description.publicationcategory Tez en_US
gdc.oaire.accepatencedate 2014-01-01
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0
gdc.oaire.influence 2.9837197E-9
gdc.oaire.influencealt 0
gdc.oaire.isgreen true
gdc.oaire.keywords Matematik
gdc.oaire.keywords Mathematics
gdc.oaire.popularity 1.0422565E-9
gdc.oaire.popularityalt 0.0
gdc.oaire.publicfunded false

Files

Collections