This is a Demo Server. Data inside this system is only for test purpose.
 

The projectile impact responses of the composite faced aluminum foam and corrugated aluminum sandwich structures: a comparative study

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

The projectile impact and energy absorption characteristics of the corrugated aluminum cored E-glass/polyester composite sandwich structures were determined at the impact velocities of 150 m/s. For comparison, E-glass/polyester sandwich structures cored with aluminum foam were also investigated. The test conditions were kept the same for each structure in order to identify the impact properties at the similar test conditions. The composite and the foam core composite sandwiches were produced by vacuum assisted resin transfer molding and the mechanical tests were performed on the composite and core samples based on ASTM. High strain rate tests were performed using a compression type Split Hopkinson Pressure Bar and drop weight test set-up. It was found that aluminum foam sandwich structures had higher ballistic limit and energy dissipating performance than corrugated aluminum sandwich structures; however, as the thickness of the face sheets increased the corrugated aluminum cores were observed to be more effective. The results showed that corrugated aluminum structures had the potentials to be used as core material in composite sandwich structures.

Description

Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2011
Includes bibliographical references (leaves: 99-101)
Text in English; Abstract: Turkish and English
xii, 101 leaves

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals