This is a Demo Server. Data inside this system is only for test purpose.
 

Characterization of the adsorption behaviour of aqueous Cd (II) and Ni (II) ions on nanoparticles of zero-valent iron

No Thumbnail Available

Date

2008

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Iron nanotechnology is recently concieved as a promising tool in environmental remediation. By virtue of their high surface/volume ratio, iron nanoparticles were shown to demonstrate outstanding sequestration capacity for various organic and inorganic pollutants.In this work iron nanoparticles were synthesized using the borohydride-reduction method. The obtained material showed chain like morphology, with the diameter of the nanoparticles being with in 20-80 nm range. HR-TEM images showed that the nanoparticles have a core-shell structure, with the core containing iron in its zero-valent state, while the shell is composed of iron oxides (Fe2O3, Fe3O4, FeOOH)and is generally < 3 nm in thickness.Nano-sized zero valent iron (nZVI) was then tested as a sorbent material for aqueous Cd2+ and Ni2+ ions. The uptake of these ions was investigated under various experimental conditions like time, concentration, pH, repititive application, and liquid/solid ratios. In addition, the uptake of these ions was compared with that of Cu2+, Zn2+, and Sr2+ in order to assess the effect of the reduction potential on the extent of removal.The results showed that nZVI is a very effective sorbent in terms of both kinetics and capacity of removal of the ions. Under the investigated conditions, the uptake reached equilibrium in less than one hour of contact time. Up to the initial concentration of 500 mg/L, the ions were removed almost completely utilizing an nZVI amount of 0.025 g and a solution volume of 10 ml. According to XRD and XPS results, both of Cd2+ and Ni2+ ions were fixed by nZVI through a non-reductive mechanism, that seems to be dominated by interaction of these ions with the exposed iron oxyhydroxide groups at the interface with the solution.

Description

Thesis (Master)--İzmir Institute of Technology, Chemistry, İzmir, 2008
Includes bibliographical references (leaves: 50-54)
Text in English; Abstract: Turkish and English
xi, 54 leaves

Keywords

TP248.25.N35 E271 2008, Chemistry, Kimya

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.