This is a Demo Server. Data inside this system is only for test purpose.
 

Sorption of As (V) from waters by use of novel amine-containing sorbents prior to HGAAS and ICP-MS determination

No Thumbnail Available

Date

2008

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

A novel sorption method utilizing several amine-containing sorbents was developed for arsenic determination in waters by hydride generation atomic absorption spectrometry (HGAAS) and inductively coupled plasma mass spectrometry (ICP-MS).Chitosan, chitosan-immobilized sodium silicate, chitosan-modified macroporous silicate, and aminopropyl triethoxysilane-treated macroporous silicate were among the sorbents investigated for As(V) sorption.Sorption parameters were optimized for As(V) using chitosan and chitosanimmobilized sodium silicate and were then applied in all sorption studies. These parameters, namely, sorption pH, amount of sorbent, reaction temperature, and shaking time were 3.0, 50.0 mg, 25 .C, and 30 min, respectively. The sorption for chitosan under the optimized conditions was 89% (±1) while that for As(III) was lower than 10% at all pHs. In addition, chitosan-modified and amine-modified macroporous silicate demonstrated 88% (±3) and 68% (±12) sorption, respectively. After the sorption, the release of arsenate from chitosan and chitosan-immobilized sodium silicate was realized using two eluents; namely, 2.0% (v/v) acetic acid which dissolved chitosan, and 1.0% (w/v) L-cysteine solution having a pH of 3.0 adjusted with HCl which eluted arsenate by reducing to arsenite. Their respective desorption percentages were 90% (±1) and 100% (±4) for chitosan, and 67% (±2) and 100% (±1) for chitosan-immobilized sodium silicate.The preconcentration study performed using an absolute amount of 150.0 ng As(V) in bottled drinking water at the enrichment factors of 1, 2, and 10 has given 98% (±3), 95% (±2), and 78% (±4) recoveries, respectively. The accuracy of the proposed methodology with chitosan was verified with spike recovery tests for various water types at a concentration of 10.0 .g/L As(V). With matrix-matched calibration, the percentage spike recovery values were determined to be 114 (±4), 112 (±2), 43 (±4), and 0 (±1), for ultrapure, bottled, tap and sea water, respectively. These results have shown the strong suppression effect of the tap and the sea water matrixes.

Description

Thesis (Master)--İzmir Institute of Technology, Chemistry, İzmir, 2008
Includes bibliographical references (leaves: 93-99)
Text in English; Abstract: Turkish and English
xiv 99 leaves

Keywords

Chitosan, Chitin, Atomic absorption spectrometry, Kimya, Arsenic, Chemistry, Atomic spectroscopic methods, Analytical chemistry, QD181.A7 B789 2008

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.