This is a Demo Server. Data inside this system is only for test purpose.
 

Free vibration and harmonic response of cracked frames using a single variable shear deformation theory

dc.author.scopusid57189600933.0
dc.author.scopusid23471347800.0
dc.author.scopusid57209911484.0
dc.contributor.authorBozyigit,B.
dc.contributor.authorYesilce,Y.
dc.contributor.authorWahab,M.A.
dc.date.accessioned2023-11-18T10:07:34Z
dc.date.available2023-11-18T10:07:34Z
dc.date.issued2020
dc.departmentIzmir Institute of Technology İYTEen_US
dc.department-tempBozyigit B., Department of Civil Engineering, Dokuz Eylul University, Buca, Izmir, Turkey; Yesilce Y.; Wahab M.A., Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam, Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Namen_US
dc.description.abstractThe aim of this study is to calculate natural frequencies and harmonic responses of cracked frames with general boundary conditions by using transfer matrix method (TMM). The TMM is a straightforward technique to obtain harmonic responses and natural frequencies of frame structures as the method is based on constructing a relationship between state vectors of two ends of structure by a chain multiplication procedure. A single variable shear deformation theory (SVSDT) is applied, as well as, Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT) for comparison purposes. Firstly, free vibration analysis of intact and cracked frames are performed for different crack ratios using TMM. The crack is modelled by means of a linear rotational spring that divides frame members into segments. The results are verified by experimental data and finite element method (FEM) solutions. The harmonic response curves that represent resonant and anti-resonant frequencies directly are plotted for various crack lengths. It is seen that the TMM can be used effectively for harmonic response analysis of cracked frames as well as natural frequencies calculation. The results imply that the SVSDT is an efficient alternative for investigation of cracked frame vibrations especially with thick frame members. Moreover, EBT results can easily be obtained by ignoring shear deformation related terms from governing equation of motion of SVSDT. Copyright © 2020 Techno-Press, Ltd.en_US
dc.identifier.citation17
dc.identifier.doi10.12989/sem.2020.74.1.033
dc.identifier.endpage54en_US
dc.identifier.issn1225-4568
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85083696869
dc.identifier.scopusqualityN/A
dc.identifier.startpage33en_US
dc.identifier.urihttps://doi.org/10.12989/sem.2020.74.1.033
dc.identifier.urihttp://standard-demo.gcris.com/handle/123456789/7071
dc.identifier.volume74en_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.oaire.dateofacceptance2020-01-01
dc.oaire.impulse0
dc.oaire.influence2.9837197E-9
dc.oaire.influence_alt0
dc.oaire.is_greenfalse
dc.oaire.isindiamondjournalfalse
dc.oaire.mag_id3017688933
dc.oaire.openaccesscolorBronze
dc.oaire.popularity2.3516435E-9
dc.oaire.popularity_alt0.0
dc.oaire.publiclyfundedfalse
dc.opencitations.citationcount1
dc.plumx.mendeleyreaders3
dc.plumx.scopuscitations22
dc.publisherTechno-Pressen_US
dc.relation.ispartofStructural Engineering and Mechanicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount23
dc.sobiad.citationcount2
dc.sobiad.linkhttps://atif.sobiad.com/index.jsp?modul=makale-detay-meta&type=metadata&title=Free+vibration+and+harmonic+response+of+cracked+frames+using+a+single+variable+shear+deformation+theory&authorname=B.+Bozyigit&year=2020&magazinename=Structural+Engineering+and+Mechanics
dc.subjectCracked frameen_US
dc.subjectFree vibrationen_US
dc.subjectHarmonic responseen_US
dc.subjectSingle variable shear deformation theoryen_US
dc.subjectTransfer matrix methoden_US
dc.titleFree vibration and harmonic response of cracked frames using a single variable shear deformation theoryen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Collections