This is a Demo Server. Data inside this system is only for test purpose.
 

Identification of salt stress responsive protyeins in wild sugar beet (Beta maritima) using 2D-page with MALDI-TOF/TOF system

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Events

Abstract

High salinity is one of the abiotic stresses, which affects the homeostasis, growth and productivity of plants. In plants, uptake of the non-essential salt ions negatively affects the anatomy, physiology and metabolism, changes the osmotic balance in cells and causes abundant dehydration. In this case, higher plants develop salt tolerance mechanisms such as induction of related signaling pathways, effluxion of salt ions, accumulation of these toxic ions in their vacuoles, activation of their detoxification mechanisms and production of osmoprotectans. In this study, identification of salt responsive proteins in moderately halophyte wild type sugar beet Beta vulgaris ssp. maritima was aimed. In order to investigate the protein-based natural stress tolerating mechanisms, plants were exposed to 150 mM NaCl and total proteins were extracted. Differentially expressed proteins were identified by proteomic approaches including MALDI-TOF/TOF mass spectrometry combined two dimensional polyacrylamide gel electrophoresis. The results revealed that enzymatic antioxidants and secondary members of antioxidative pathways are responsive in salt stress. In conclusion, these detected proteins demonstrate that antioxidative system may be the major defense mechanism in halophytic plants.

Description

Thesis (Master)--Izmir Institute of Technology, Molecular Biology and Genetics, Izmir, 2012
Includes bibliographical references (leaves: 30-34)
Text in English; Abstract: Turkish and English
xiii, 55 leaves

Keywords

Salt stress, Genetics, Genetik, Medical Biology, Tıbbi Biyoloji

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals