This is a Demo Server. Data inside this system is only for test purpose.
 

Absolutely supplement and absolutely complement modules

dc.contributor.advisor Alizade, Refail en
dc.contributor.author Erdoğan, Sultan Eylem
dc.date.accessioned 2023-11-13T09:36:18Z
dc.date.available 2023-11-13T09:36:18Z
dc.date.issued 2004 en
dc.department City and Regional Planning en_US
dc.description Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2004 en
dc.description Includes bibliographical references (leaves: 50-51) en
dc.description Text in English; Abstract: Turkish and English en
dc.description vi, 49 leaves en
dc.description.abstract We introduce and study absolutely supplement (respectively complement) modules. We call a module an absolutely supplement (respectively complement) if it is a supplement (respectively complement) in every module containing it. We show that a module is absolutely supplement (respectively complement) if and only if it is a supplement (respectively complement) in its injective envelope. The class of all absolutely supplement (respectively complement) modules is closed under extensions and under supplement submodules (respectively under factor modules by complement submodules). We also consider the dual notions of absolutely co-supplements (respectively co-complements). en
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/4831
dc.institutionauthor Erdoğan, Sultan Eylem
dc.language.iso en en_US
dc.oaire.dateofacceptance 2004-01-01
dc.oaire.impulse 0
dc.oaire.influence 2.9837197E-9
dc.oaire.influence_alt 0
dc.oaire.is_green true
dc.oaire.isindiamondjournal false
dc.oaire.keywords Matematik
dc.oaire.keywords Mathematics
dc.oaire.popularity 3.9385506E-10
dc.oaire.popularity_alt 0.0
dc.oaire.publiclyfunded false
dc.publisher Izmir Institute of Technology en
dc.relation.publicationcategory Tez en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject.lcc QA169 .E66 2004 en
dc.subject.lcsh Algebra, Homological en
dc.title Absolutely supplement and absolutely complement modules en_US
dc.type Master Thesis en_US
dspace.entity.type Publication

Files

Collections