This is a Demo Server. Data inside this system is only for test purpose.
 

Container Damage Detection and Classification Using Container Images

dc.author.wosidimamoglu, zeynep/ABD-5706-2021
dc.author.wosidBastanlar, Yalin/AAA-7114-2022
dc.contributor.authorImamoglu, Zeynep Ekici
dc.contributor.authorTuglular, Tugkan
dc.contributor.authorBastanlar, Yalin
dc.contributor.authorTuğlular, Tuğkan
dc.contributor.otherBilgisayar Mühendisliği Bölümü
dc.date.accessioned2023-10-30T08:06:54Z
dc.date.available2023-10-30T08:06:54Z
dc.date.issued2020
dc.departmentIzmir Institute of Technology İYTEen_US
dc.department-temp[Imamoglu, Zeynep Ekici; Tuglular, Tugkan; Bastanlar, Yalin] Izmir Yuksek Teknol Enstitusu, Bilgisayar Muhendisligi Bolumu, Izmir, Turkeyen_US
dc.description.abstractIn the logistics sector, digital transformation is of great importance in terms of competition. In the present case, container warehouse entry / exit operations are carried out manually by the logistics personnel including container damage detection. During container warehouse entry / exit process, the process of detecting damaged containers is carried out by the personnel and several minutes are required to upload to the IT system. The aim of our work is to automate the detection of damaged containers. This way, the mistakes made by the personnel will be eliminated and the process will be accelerated. In this work, we propose to use a convolutional neural network (CNN) that takes the container images and classify them as damaged or undamaged. We modeled the problem as a binary classification and employed different CNN models. The result we obtained shows that there is no single best method for the classification. It is shown how the dataset was created and how the parameters used in the layered structures affect the models employed in this study.en_US
dc.identifier.citation0
dc.identifier.doi[WOS-DOI-BELIRLENECEK-2]
dc.identifier.isbn9781728172064
dc.identifier.issn2165-0608
dc.identifier.urihttp://65.108.157.135:4000/handle/123456789/38
dc.identifier.wosWOS:000653136100415
dc.language.isotren_US
dc.opencitations.citationcount0
dc.publisherIeeeen_US
dc.relation.ispartof28th Signal Processing and Communications Applications Conference (SIU) -- OCT 05-07, 2020 -- ELECTR NETWORKen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.sobiad.citationcount0
dc.subjectcontaineren_US
dc.subjectimage based classificationen_US
dc.subjectmachine learningen_US
dc.subjectdeep learningen_US
dc.subjectconvolutional neural networksen_US
dc.titleContainer Damage Detection and Classification Using Container Imagesen_US
dc.typeConference Objecten_US
dc.wos.citedbyCount0
dspace.entity.typePublication
relation.isAuthorOfPublication16066bf2-f189-4d4b-91e8-3fc6cb495163
relation.isAuthorOfPublication.latestForDiscovery16066bf2-f189-4d4b-91e8-3fc6cb495163
relation.isOrgUnitOfPublicationc6842224-7566-492d-b2b4-2d51b18ef9e3
relation.isOrgUnitOfPublication.latestForDiscoveryc6842224-7566-492d-b2b4-2d51b18ef9e3

Files

Collections