This is a Demo Server. Data inside this system is only for test purpose.
 

A genetic-fuzzy system modeling of trip distribution

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Trip distribution modelling is one of the most active parts of travel demand analysis. In recent years, use of soft computing techniques has introduced effective modelling approaches to the trip distribution problem. Fuzzy Rule-Based System (FRBS) and Genetic Fuzzy Rule-Based System (GFRBS: fuzzy system improved by a knowledge base learning process with genetic algorithms) modelling of trip distribution are two of these new approaches. However, much of the potential of these techniques has not been demonstrated so far. The present study explores the potential capabilities of these approaches in an urban trip distribution problem with some new features. For this purpose, a simple FRBS and a novel GFRBS were designed to model Istanbul intra-city passenger flows. Subsequently, their accuracy, applicability, and generalizability characteristics were evaluated against the well-known gravity and neural networks based trip distribution models. The overall results show that: i) traditional doubly constrained gravity models are still simple and efficient; ii) neural networks may not show expected performance when they are forced to satisfy production-attraction constraints; iii) simply-designed FRBSs, learning from observations and expertise, are both interpretable and efficient in forecasting trip interchanges even if the data is large and noisy; and iv) use of genetic algorithms in fuzzy rule base learning considerably increases modelling performance, although it brings additional computation costs.

Description

Thesis (Doctoral)--Izmir Institute of Technology, City and Regional Planning, Izmir, 2010
Includes bibliographical references (leaves: 89-96)
Text in English; Abstract: Turkish and English
ix, 141 leaves

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections