Q-periodicity, self-similarity and weierstrass-mandelbrot function
| dc.contributor.advisor | Pashaev, Oktay | en |
| dc.contributor.author | Erkuş, Soner | |
| dc.date.accessioned | 2023-11-13T09:43:20Z | |
| dc.date.available | 2023-11-13T09:43:20Z | |
| dc.date.issued | 2012 | en |
| dc.description | Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2012 | en |
| dc.description | Includes bibliographical references (leaves: 92-94) | en |
| dc.description | Text in English; Abstract: Turkish and English | en |
| dc.description | viii, 98 leaves | en |
| dc.description.abstract | In the present thesis we study self-similar objects by method's of the q-calculus. This calculus is based on q-rescaled finite differences and introduces the q-numbers, the qderivative and the q-integral. Main object of consideration is the Weierstrass-Mandelbrot functions, continuous but nowhere differentiable functions. We consider these functions in connection with the q-periodic functions. We show that any q-periodic function is connected with standard periodic functions by the logarithmic scale, so that q-periodicity becomes the standard periodicity. We introduce self-similarity in terms of homogeneous functions and study properties of these functions with some applications. Then we introduce the dimension of self-similar objects as fractals in terms of scaling transformation. We show that q-calculus is proper mathematical tools to study the self-similarity. By using asymptotic formulas and expansions we apply our method to Weierstrass-Mandelbrot function, convergency of this function and relation with chirp decomposition. | en |
| dc.identifier.uri | http://standard-demo.gcris.com/handle/123456789/5049 | |
| dc.language.iso | en | en_US |
| dc.publisher | Izmir Institute of Technology | en |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject.lcsh | Fourier transformations | en |
| dc.subject.lcsh | Mandelbrot sets | en |
| dc.subject.lcsh | Fractals | en |
| dc.subject.lcsh | Mellin transform | en |
| dc.title | Q-periodicity, self-similarity and weierstrass-mandelbrot function | en_US |
| dc.type | Master Thesis | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Erkuş, Soner | |
| gdc.description.department | Food Engineering | en_US |
| gdc.description.publicationcategory | Tez | en_US |
| gdc.oaire.accepatencedate | 2012-01-01 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0 | |
| gdc.oaire.influence | 2.9837197E-9 | |
| gdc.oaire.influencealt | 0 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Chirp signals | |
| gdc.oaire.keywords | Matematik | |
| gdc.oaire.keywords | Fourier transformation | |
| gdc.oaire.keywords | Fractal dimension | |
| gdc.oaire.keywords | Fractal | |
| gdc.oaire.keywords | Fourier series | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.popularity | 8.197724E-10 | |
| gdc.oaire.popularityalt | 0.0 | |
| gdc.oaire.publicfunded | false |