This is a Demo Server. Data inside this system is only for test purpose.
 

Estimation of the surface charge distribution of solids in liquids by using atomic force microscopy

dc.contributor.advisorPolat, Mehmeten
dc.contributor.authorYelken Özek, Gülnihal
dc.date.accessioned2023-11-16T12:15:13Z
dc.date.available2023-11-16T12:15:13Z
dc.date.issued2011en
dc.departmentChemical Engineeringen_US
dc.descriptionThesis (Doctoral)--Izmir Institute of Technology, Chemical Engineering, Izmir, 2011en
dc.descriptionIncludes bibliographical references (leaves: 131-139)en
dc.descriptionText in English; Abstract: Turkish and Englishen
dc.descriptionxxi, 152 leavesen
dc.description.abstractColloidal systems are widely encountered in minerals, ceramics, environment, biology, pharmaceuticals and cosmetics industries. These systems consist of micronsized particulates dispersed in a solvent. Homogeneity, dispersibility, stability of colloidal systems determines the economy and success of the final product in these applications. Control and manipulation of these properties depend on detailed analysis of the interactions among the particles. Electrophoretic potential measurements or colloidal titration methods are widely employed to characterize the charging of colloidal systems. However these methods only yield average charging information, not the charge distribution on the surface. Atomic Force Microscope (AFM) allows topographic surface analysis at nanometer level resolutions. Though it is widely used to obtain derived information AFM directly measures the forces between the tip and the surface atoms. The objective of the present work is to assess the applicability of AFM to surface charge mapping, i.e., the detection of positive or negative charged regions on metal oxide surfaces. Hence, well defined tips were prepared and allowed to interact with well defined oxide surfaces under different pH conditions. The influence of solution ion concentration and pH on the forces measured was also investigated. These measured force-distance curves were analyzed using a new solution of the one dimensional Poisson-Boltzmann equation to isolate the electrical double layer force, hence the surface charge on each measurement point. The new solution in question provides analytical expressions for all charging conditions which are amenable to such analysis.Repetitive force measurements on a predefined grid on the solid surface ultimately yield the charge distribution of the surface. Such an analysis procedure is new and advances the charge measurements on solids in solution to a new level.en
dc.identifier.urihttp://standard-demo.gcris.com/handle/123456789/6470
dc.language.isoenen_US
dc.oaire.dateofacceptance2011-01-01
dc.oaire.impulse0
dc.oaire.influence2.9837197E-9
dc.oaire.influence_alt0
dc.oaire.is_greentrue
dc.oaire.isindiamondjournalfalse
dc.oaire.keywordsAtomic force microscope
dc.oaire.keywordsColloidal systems
dc.oaire.keywordsSurface charge
dc.oaire.keywordsChemical Engineering
dc.oaire.keywordsKimya Mühendisliği
dc.oaire.popularity7.325455E-10
dc.oaire.popularity_alt0.0
dc.oaire.publiclyfundedfalse
dc.publisherIzmir Institute of Technologyen
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.lcshSurface chemistryen
dc.subject.lcshSolids--Surfacesen
dc.subject.lcshAtomic force microscopyen
dc.subject.lcshLiquidsen
dc.titleEstimation of the surface charge distribution of solids in liquids by using atomic force microscopyen_US
dc.typeDoctoral Thesisen_US
dspace.entity.typePublication

Files

Collections