This is a Demo Server. Data inside this system is only for test purpose.
 

A learning-based demand classification service with using XGBoost in institutional area

dc.contributor.advisor Ayav, Tolga
dc.contributor.author Gürakın, Çağrı
dc.contributor.author Ayav, Tolga
dc.date.accessioned 2023-11-13T09:08:09Z
dc.date.available 2023-11-13T09:08:09Z
dc.date.issued 2019-07 en_US
dc.description Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2019 en_US
dc.description Includes bibliographical references (leaves: 48-49) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description.abstract This study, purposes to explain the development stages and methodology of data classification service that has a text-based adaptable programming interface. One of the successful classification algorithms, XGBoost, was preferred in the study. The dataset that is used in the study obtained by 'Digital Business Tracking Application' of a name anonymized company. The dataset is tested by using different classification algorithms and detailed performance evaluation was conducted. As a result, highest accuracy rate is obtained with 'Data Classification Service' which was developed by using XGBoost algorithm. en_US
dc.description.abstract Bu çalışma, metin-tabanlı, uyarlanabilir bir programlama arayüzüne sahip; veri sınıflandırma servisi geliştirme aşamalarını ve çalışmada takip edilen metodolojiyi konu alır. Çalışmada, başarılı sınıflandırma algoritmalarından biri olan XGBoost tercih edilmiştir. Çalışmada kullandığımız veri kümesi, bilgilerini anonimleştirdiğimiz bir şirketin; 'Dijital İş Takip Uygulaması' aracılığı ile elde edilmiştir. Veri seti farklı sınıflandırma algoritmaları ile de test edilmiş ve detaylı performans değerlendirmeleri yapılmıştır. Sonuç olarak, testlerimizde en yüksek doğruluk oranı, XGBoost algoritması ile geliştirdiğimiz veri sınıflandırma servisi ile elde edildi. en_US
dc.format.extent xii, 49 leaves en_US
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/3722
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject XGBoost en_US
dc.subject Natural language processing en_US
dc.subject Supervised learning en_US
dc.subject Machine learning en_US
dc.subject Multinomial classification en_US
dc.title A learning-based demand classification service with using XGBoost in institutional area en_US
dc.title.alternative Kurumsal alanda XGBoost ile öğrenme-tabanlı talep sınıflandırma servisi en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Gürakın, Çağrı
gdc.description.department Computer Engineering en_US
gdc.description.publicationcategory Tez en_US
gdc.oaire.accepatencedate 2019-01-01
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0
gdc.oaire.influence 2.9837197E-9
gdc.oaire.influencealt 0
gdc.oaire.isgreen true
gdc.oaire.keywords Engineering Sciences
gdc.oaire.keywords Mühendislik Bilimleri
gdc.oaire.popularity 2.03792E-9
gdc.oaire.popularityalt 0.0
gdc.oaire.publicfunded false
relation.isAuthorOfPublication c6b1de69-69eb-4c14-9a6d-ed9755d501f4
relation.isAuthorOfPublication.latestForDiscovery c6b1de69-69eb-4c14-9a6d-ed9755d501f4

Files

Collections