This is a Demo Server. Data inside this system is only for test purpose.
 

Structural and magnetic characterization of nitrogen ion implanted stainless steel and CoCrMo alloys

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology
Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

Ion beam surface modification methods can be used to create hard and wear resistant surface layers with enhanced corrosion resistance on austenitic stainless steels (SS) and CoCr base alloys using nitrogen ions. This is mainly due to the formation of high N content phase, γN, at relatively low substrate temperatures from about 350 to 450 ºC. This surface layer is known as an expanded austenite layer. Different N contents and diffusion rates depending on grain orientations as well as anisotropic lattice expansion and high residual stresses are some peculiar properties associated with the formation of this phase. Another peculiar feature of the expanded austenite phase is related to its magnetic character. In this study, new data related to the magnetic nature of the expanded austenite layers on austenitic stainless steel (304 SS) and CoCrMo alloy by nitrogen plasma immersion ion implantation (PIII) are presented. Magnetic behaviour, nitrogen distribution, implanted layer phases, surface topography, and surface hardness were studied with a combination of experimental techniques involving magnetic force microscopy, SIMS, XRD, SEM, AFM and nanoindentation method. The experimental analyses indicate that the low temperature samples clearly show the formation of the expanded austenite phase, while the decomposition of this metastable phase into CrN precipitates occurs at higher temperatures. As a function of the processing temperature, phase evolution stage for both alloys follows the same trend: (1) initial stage of the expanded phase, γN, formation; (2) its full development, and (3) its decomposition into CrN precipitates and the Cr-depleted matrix, fcc γ-(Co,Mo) for CoCrMo and bcc α-(Fe,Ni) for 304 SS. MFM imaging reveals distinct, stripe-like ferromagnetic domains for the fully developed expanded austenite layers both on 304 SS and CoCrMo alloys. Weak domain structures are observed for the CoCrMo samples treated at low and high processing temperatures. The images also provide strong evidence for grain orientation dependence of magnetic properties. The ferromagnetic state for the γN phase observed here is mainly linked to large lattice expansions due to high N content.

Description

Thesis (Master)--Izmir Institute of Technology, Physics, Izmir, 2014
Includes bibliographical references (leaves: 80-83)
Text in English; Abstract: Turkish and English
xii, 83 leaves

Keywords

Fizik ve Fizik Mühendisliği, Physics and Physics Engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals