This is a Demo Server. Data inside this system is only for test purpose.
 

Constructing reference datasets for evaluating automated compensation algorithms in multicolor flow cytometry

No Thumbnail Available

Date

2017-11

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In this thesis, we develop a numerical framework to simulate flow cytometry readings on BD FACSCanto flow cytometer by constructing cell profiles with specific target biomarker concentrations and modelling various physical phenomena involved in a flow cytometer. The principal aim of this thesis is to provide realistic datasets over which prospective automated compensation algorithms can be evaluated. In our study, we have first constructed model cell profiles based on human lymphocytes stained with fluorescent dyes. We secondly focused on determining the number of photons emitted from each fluorochrome-conjugated target proteins in a cell through fluorescence following excitation. We thirdly simulated the optic channel of BD FACSCanto flow cytometer and implemented a stochastic photon counting method to determine fluorescence intensity received in the different detectors. Then, we simulated a pre-amplifier circuit to calculate the detector responses as voltage pulses from each cell in response to received photons. Using the completed platform, we have generated a two-colour flow cytometry dataset including + +, + -, - +, and - - cell groups using FITC and PE fluorochromes. We demonstrated the usefulness of the generated reference datasets by applying two different linear compensation methods and comparing the resulting compensated datasets in both linear and logarithmic scales. These results suggest that the developed platform can be used to generate realistic multi-colour flow cytometry datasets that can be used to validate compensation algorithms.
Bu çalışmada, BD FACSCanto akış sitometrisinde okunan değerlerin simülasyonunu yapmak için, belli hedef biyoişaret konsantrasyonuna sahip hücre profilleri oluşturularak ve bir akış sitometrisinde yer alan fiziksel olaylar modellenerek, nümerik bir platform oluşturduk. Çalışmanın asıl amacı; prospektif otomatikleştirilmiş dengeleme algoritmalarının değerlendirilebileceği gerçekçi veri setlerinin sağlanabilmesidir. Çalışmamızda, ilk olarak flüoresan boyalarla boyanmış insan lenfositlerine dayanan, model hücre profillerini oluşturduk. İkinci olarak, bir hücredeki hedef proteinlerine bağlanmış her bir fluorokromun, uyarımından sonra fluoresans süresince yayılan foton sayısını belirlemeye odaklandık. Üçüncü olarak, BD FACSCanto akış sitometrisinin optik kanalının simülasyonunu yaptık ve farklı dedektörlere ulaşan ışınım yoğunluğunu belirlemek için bir stokastik foton sayma yöntemi uyguladık. Daha sonra, ulaşan fotonlara karşılık olarak, her bir hücrenin dedektör tepkilerini, voltaj sinyalleri olarak hesaplamak için bir ön amplifikat ör devresini simüle ettik. Bu tamamlanmış platformu kullanarak, FITC ve PE fluorokromlarını kullanarak, + +, + -, - +, - - hücre gruplarını içeren, iki renkli akış sitometrisi veri setlerini oluşturduk. Üretilen veri setlerinin kullanılabilirliğini göstermek için iki farklı doğrusal dengeleme metodu uyguladık ve kompanse edilen veri setlerinin sonuçlarını hem doğrusal hem de logaritmik ölçekte karşılaştırdık. Elde edilen sonuçlar, geliştirilen platformu, dengeleme algoritmalarının doğrulanmasında kullanılmak üzere, gerçekçi çok-renkli akış sitometri veri setleri üretimi için önermektedir.

Description

Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2017
Includes bibliographical references (leaves: 97-100)
Text in English; Abstract: Turkish and English

Keywords

Flow cytometry, Compensation, Reference datasets, Elektrik ve Elektronik Mühendisliği, Biyoteknoloji, Electrical and Electronics Engineering, Biotechnology

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.