This is a Demo Server. Data inside this system is only for test purpose.
 

Solutions of initial and boundary value problems for inhomogeneous burgers equations with time-variable coefficients

dc.contributor.advisor Atılgan Büyükaşık, Şirin en_US
dc.contributor.author Bozacı, Aylin
dc.date.accessioned 2023-11-13T09:07:49Z
dc.date.available 2023-11-13T09:07:49Z
dc.date.issued 2016-07
dc.description Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2016 en_US
dc.description Full text release delayed at author's request until 2016.09.24 en_US
dc.description Includes bibliographical references (leaves: 87) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description vii, 91 leaves en_US
dc.description.abstract In this thesis, we have investigated initial-boundary value problems on semiinfinite line for inhomogeneous Burgers equation with time-variable coecients. We have formulated the solutions for the cases with Dirichlet and Neumann boundary conditions. We showed that the Dirichlet problem for the variable parametric Burgers equation is solvable in terms of a linear ordinary dierential equation and a linear second kind singular Volterra integral equation. Then, for particular models with special initial and Dirichlet boundary conditions we found a class of exact solutions. Next, we considered the Neumann problem and showed that it reduces to a second order linear ordinary dierential equation and the standard heat equation with initial and nonlinear boundary conditions. Finally, we formulated the Cauchy problem for the variable parametric Burgers equation on the non-characteristic line, and obtained its solution in terms of a linear ODE and the series solution of the corresponding Cauchy problem for the heat equation. We gave examples to illustrate how some well known solutions of the Burgers equation can be recovered by solving a corresponding Cauchy problem. en_US
dc.description.abstract Bu tezde zamana bağlı değişken katsayılı, homojen olmayan Burger denklemi için yarı sonsuz aralıkta başlangıç-sınır değer problemlerini araştırdık. Dirichlet ve Neumann sınır koşulları durumlarında çözümler için formülasyonlar elde ettik. Zamana bağlı değişken katsayılı Burger denkleminin bir lineer adi diferansiyel denklem ve bir lineer ikinci çeşit tekil Volterra integral denklemi cinsinden çözülebilir olduğunu gösterdik. Ardından, özel başlangıç ve Dirichlet sınır değer koşullu özel modeller için kesin çözüm sınıfları bulduk. Neumann problemini göz önüne aldık ve bu problemin ikinci mertebeden lineer adi diferansiyel denklem ile ba¸slangıç ve nonlineer sınır koşullarına sahip standart ısı denklemine indirgendiğini gösterdik. Son olarak karakteristik olmayan doğru üzerinde değişken katsayılı Burger denklemi için Cauchy problemini formüle ettik ve bu problemin çözümünü lineer adi diferansiyel denklem ile ısı denklemi için Cauchy problemine karşılık gelen seri çözümü türünden elde ettik. Burger denkleminin bazı iyi bilinen çözümlerinin, ilgili Caucy problemini çözerek nasıl elde edilebileceğini göstermek için örnekler verdik. en_US
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/3675
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Burgers equation en_US
dc.subject Boundary-value problems en_US
dc.subject Dirichlet problem en_US
dc.subject Heat equation en_US
dc.title Solutions of initial and boundary value problems for inhomogeneous burgers equations with time-variable coefficients en_US
dc.title.alternative Katsayıları zamana bağlı homojen Burgers denkleri için başlangıç ve sınır değer problemlerinin çözümleri en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Bozacı, Aylin
gdc.description.department Mechanical Engineering en_US
gdc.description.publicationcategory Tez en_US

Files

Collections