This is a Demo Server. Data inside this system is only for test purpose.
 

Modeling of concrete under high strain rate conditions using nonlinear finite element method

No Thumbnail Available

Date

2017-07

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In this study, a comprehensive experimental and numerical study was undertaken to model concrete under high strain rate conditions. Concrete cylinder specimens, all obtained from the same batch, were tested both under ststic and high strainrate conditions. 15 eylinder specimens were tested under 3.55x10-5, 3.23x10-4, 2.97x10-3 1/s strain rates, whereas three identical specimens were tested using a Split Hopkinson Pressure Bar SHPB) tes setup under 235, 245, 260 1/s strain rates. Used SHPB setup was modified to include quartz crystal stress developed in the specimens werw directly obtained, eliminating common isssues regarding stress readings in a conventional setup. Stress-strain behavior and other material parameters that would be necessary for numerical modeling were obtained under various strain rates. Test samples were modeled using an explicit finite element program LS-DYNA, using Holmquist-Johnson-Cook model with experimentally obtained model parameters. To verify the obtained parameters further, drop tower test on concrete plates were also performed and modeled. Numerical modeling of both SHPB samples and concrete plates were successful in capturing the observed behavior. The study also provided the literature with a reliable test data with complete parameters that can be used for further studies in the area.

Description

Thesis (Doctoral)--Izmir Institute of Technology, Civil Engineering, Izmir, 2017
Includes bibliographical references (leaves: 86-88)
Text in English; Abstract: Turkish and English

Keywords

Reinforced concrete, Nonlinear finite element method, Split Hopkinson Pressure Bar, Concretes, İnşaat Mühendisliği, Civil Engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals