This is a Demo Server. Data inside this system is only for test purpose.
 

Exploiting fragment-ion complementarity for peptide de novo sequencing from collision induced dissociation tandem mass spectra

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

Peptide identification from mass spectrometric data is a key step in proteomics because this field provides sequence, quantitative, and modification data of actually expressed proteins. Two approaches are generally deployed to interpret experimental MS/MS data, database searching and de novo sequencing. Database search method has been used successfully in proteomics projects for organisms with well-studied genomes. However, it is not applicable in situations where a target sequence is not in the protein database. This can happen for a number of reasons, including novel proteins, protein mutations and post-translational modifications. Because of the disadvantages of database searching method, a lot of research has focused on de novo sequencing method which assigns amino acid sequences to MS/MS spectra without the need for a database. The aim of this study is to enhance the accuracy of de novo sequencing tools. One step commonly employed in all de novo sequencing tools is naming of fragment ions. It is essential to know which peak represents which ion type in order to traverse a spectrum graph to find an amino acid sequence that best explains the MS/MS spectrum. Different approaches have been tried to name ions and some success has been achieved in naming b-type ions and y-type ions. We have presented a new approach which enables the naming of not only b- and y-type ions but other arbitrary ion types as well. This enabled the detection of b-ion ladder. In the latter case, missing fragments were determined by using other named ion types. Furthermore, unexplained data in tandem mass spectra were reduced as much as possible. Therefore, a complete sequence will be derived by the new approach.

Description

Thesis (Master)--Izmir Institute of Technology, Molecular Biology and Genetics, Izmir, 2011
Includes bibliographical references (leaves: 58-64)
Text in English; Abstract: Turkish and English
x, 64 leaves

Keywords

Genetics, Genetik

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals