This is a Demo Server. Data inside this system is only for test purpose.
 

Seismic behavior of steel I-beams reinfor ced with glass fiber reinforced polymer: An experimental study

dc.contributor.advisor Eğilmez, Oğuz Özgür en
dc.contributor.author Yormaz, Doruk
dc.date.accessioned 2023-11-13T09:38:25Z
dc.date.available 2023-11-13T09:38:25Z
dc.date.issued 2010 en
dc.description Thesis (Master)--Izmir Institute of Technology, Civil Engineering, Izmir, 2010 en
dc.description Includes bibliographical references (leaves: 107-111) en
dc.description Text in English; Abstract: Turkish and Enlish en
dc.description ix,55 leaves en
dc.description.abstract Design guidelines, which are put into effect in the aftermath of the 1994 Northridge earthquake, require intermediate and special moment frames (IMF and SMF) be capable of maintaining 0.02 and 0.04 radians interstory drift, respectively without significant strength degradation and development of instability. However, local buckles in the plastic hinge region are major hindrances for the ductility capability and stability of the structural system. Thus, the research program aims to mitigate such inelastic instabilities by using glass fiber reinforced polymer (GFRP), which possesses elastic modulus roughly one order of magnitude less than that of steel. On the other hand, this elastic modulus discrepancy between GFRP and steel can be useful for stabilizing local buckles by means of the bracing effect of GFRP during plastic hinge formations. This thesis describes large-scale experimental study of the research program that investigates the seismic behavior of steel I-beams reinforced with GFRP. In this experimental study, four HE400AA beams with welded haunch (WH) modification and three HE500AA beams with no modification were tested under cyclic loading. The results of experimental study indicate that it does not seem possible to rely on GFRP reinforcement to increase the flexural resistance of connections at a rotation of 0.04 radians because the adhesive layer between steel and GFRP fails in rotations much lower than 0.04 radians. However, the seismic performance of the structure can be moderately improved with the bottom flange WH and GFRP reinforcement in order to maintain rotations without local buckles in accordance with the rotation demand of IMFs, which is 0.02 radians. en
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/4884
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject.lcsh Earthquake resistant design en
dc.subject.lcsh Stel I-beams en
dc.subject.lcsh Glass-reinforced plastics en
dc.subject.lcsh Fiber-reinforced plastics en
dc.title Seismic behavior of steel I-beams reinfor ced with glass fiber reinforced polymer: An experimental study en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Yormaz, Doruk
gdc.description.department Civil Engineering en_US
gdc.description.publicationcategory Tez en_US
gdc.oaire.accepatencedate 2010-01-01
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0
gdc.oaire.influence 2.9837197E-9
gdc.oaire.influencealt 0
gdc.oaire.isgreen true
gdc.oaire.keywords Steel structures
gdc.oaire.keywords Buckling
gdc.oaire.keywords Glass fiber composites
gdc.oaire.keywords Strengthening
gdc.oaire.keywords Fiberglass
gdc.oaire.keywords İnşaat Mühendisliği
gdc.oaire.keywords Civil Engineering
gdc.oaire.keywords Stability
gdc.oaire.popularity 6.5821576E-10
gdc.oaire.popularityalt 0.0
gdc.oaire.publicfunded false

Files

Collections