This is a Demo Server. Data inside this system is only for test purpose.
 

Stochastic resonance in chua's circuit driven by alpha-stable noise

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

The main aim of this thesis is to investigate the stochastic resonance (SR) in Chua's circuit driven by alpha-stable noise which has better approximation to a real-world signal than Gaussian distribution. SR is a phenomenon in which the response of a nonlinear system to a sub-threshold (weak) input signal is enhanced with the addition of an optimal amount of noise. There have been an increasing amount of applications based on SR in various fields. Almost all studies related to SR in chaotic systems assume that the noise is Gaussian, which leads researchers to investigate the cases in which the noise is non-Gaussian hence has infinite variance. In this thesis, the spectral power amplification which is used to quantify the SR has been evaluated through fractional lower order Wigner Ville distribution of the response of a system and analyzed for various parameters of alpha-stable noise. The results provide a visible SR effect in Chua’s circuit driven by symmetric and skewed-symmetric alpha-stable noise distributions. Furthermore, a series of simulations reveal that the mean residence time that is the average time spent by the trajectory in an attractor can vary depending on different alpha-stable noise parameters.

Description

Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2012
Includes bibliographical references (leaves: 75-80)
Text in English; Abstract: Turkish and English
x, 80 leaves

Keywords

Elektrik ve Elektronik Mühendisliği, Noise, Electrical and Electronics Engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals