This is a Demo Server. Data inside this system is only for test purpose.
 

A method to design kinetic planar surface with mathematical tessellation techniques

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Due to rapid change in activities on modern society in XXth century, need of adaptation has emerged, which was the necessary precondition for the rise of the concept of motion or kinetic in architecture. Kinetic architecture is a controversial interdisciplinary area between architecture and mechanisms science. Many kinetic designers and researchers usually reach transformable, deployable or foldable structures by using mechanical knowledge. However, there are not many researches that focus on the surfaces between kinetic structures. Those surfaces generally covered with flexible or flat materials. Kinetic architects, who usually deal with a particular type of the mechanism, can easily control the design of mechanism. Therefore, a method is necessary to construct a network with planar mechanisms for variable building surfaces due to the fact that it can be a problem of studying during the design process of kinetic building parts. Many questions might be a problem such as how many links should be used, what kind of joints and platform should be chosen and finally the mobility of the whole kinetic system. To design a surface has been one of the major problems for architects. Through the history, architecture has benefited from mathematics such as golden ratio, fractal geometry and tessellation. Tessellation is a kind of mathematical technique that was usually used to cover a plane without any gaps or overlaps, because of this properties, it uses to design surfaces. So, the main purpose of this study is to develop a methodology to design kinetic planar surfaces with mathematical regular tessellation technique in the light of architectural, mechanical and mathematical interdisciplinary approach.

Description

Thesis (Master)--İzmir Institute of Technology, Architecture, İzmir, 2010
Includes bibliographical references (leaves: 113-120)
Text in English; Abstract: Turkish and English
xv, 122 leaves

Keywords

Facade design, Plane surfaces, Architecture, Structure, Mimarlık, Planer mechanism

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections