This is a Demo Server. Data inside this system is only for test purpose.
 

Trajectory prediction of moving objects by means of neural networks

No Thumbnail Available

Date

1997

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

Estimating the three-dimensional motion of an object from a sequence of object positions and orientation is of significant importance in variety of applications in control and robotics. For instance, autonomous navigation, manipulation, servo, tracking, planning and surveillance needs prediction of motion parameters. Although "motion estimation" is an old problem (the formulations date back to the beginning of the century), only recently scientists have provided with the tools from nonlinear system estimation theory to solve this problem eural Networks are the ones which have recently been used in many nonlinear dynamic system parameter estimation context. The approximating ability of the neural network is used to identifY the relation between system variables and parameters of a dynamic system. The position, velocity and acceleration of the object are estimated by several neural networks using the II most recent measurements of the object coordinates as input to the system Several neural network topologies with different configurations are introduced and utilized in the solution of the problem. Training schemes for each configuration are given in detail. Simulation results for prediction of motion having different characteristics via different architectures with alternative configurations are presented comparatively.

Description

Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 1997
Includes bibliographical references (leaves: 103-105)
Text in English; Abstract: Turkish and English
viii, 105 leaves

Keywords

Artificial neural networks, Control, Robotics, Computer Engineering and Computer Science and Control, Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.