This is a Demo Server. Data inside this system is only for test purpose.
 

Characterization of modified ito anode surfaces with 4 [3-methylphenyl) phenyl) anino] benzoic acid for oled applications

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

This thesis focuses on to improve OLED characteristics of fabricated devices by modifying the ITO (anode) surface using novel carboxylic acid based molecule 4-[(3-methylphenyl)(phenyl)amino]benzoic acid (MPPBA). In this study, commercial ITO substrates were used as anodes. To modify the ITO surface, etched ITO substrates were kept in 1mM MPPBA-ethanol solution. As a hole transport layer (HTL), N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) or N,N'-Di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB) small molecules were deposited using an organic evaporator system under the vacuum of 10-6 Torr. Finally, as a cathode contact layer, aluminum thin film of 120 nm was deposited on top of the fabricated organic thin film layers. The final structure of the devices was obtained as ITO /SAM (2nm) /HTL (50nm) /Al (120nm). The current-voltage characteristics of devices of unmodified bare ITO and MPPBA modified ITO substrates were analyzed by using the space charge limited current approach and Thermionic Schottky Emission Models. Additionally, surface characterizations of the SAM modified thin films were carried out using Quartz Crystal Microbalance (QCM), Atomic Force Microscopy (AFM), Kelvin Probe Force Microscopy (KPFM), X-ray Photoelectron Spectroscopy (XPS), Cyclic Voltammetry (CV) and Ultraviolet-visible Absorption Spectroscopy (UV-Vis) techniques. The obtained results reveal that the modification of the ITO surface with MPPBA molecules reduces the barrier height difference between the Fermi level of the anode and HOMO level of the HTL. Hence the hole injection increases while the turn-on voltage decreases. As a result of this process OLED characteristics were improved by using the MPPBA SAM molecules.

Description

Thesis (Master)--Izmir Institute of Technology, Physics, Izmir, 2011
Includes bibliographical references (leaves: 90-101)
Text in English; Abstract: Turkish and English
xiv, 101 leaves

Keywords

Organic molekules, Fizik ve Fizik Mühendisliği, Nano structure, Physics and Physics Engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals