This is a Demo Server. Data inside this system is only for test purpose.
 

Synthesis, characterization of CdSxSe1-x quantum dots and evaluation of their real-time motions in live cells

dc.contributor.advisor Özçelik, Serdar en
dc.contributor.author Ünal, Gülçin
dc.date.accessioned 2023-11-13T09:35:51Z
dc.date.available 2023-11-13T09:35:51Z
dc.date.issued 2011 en
dc.description Thesis (Master)--İzmir Institute of Technology, Chemistry, İzmir, 2011 en
dc.description Includes bibliographical references (leaves: 49-52) en
dc.description Text in English; Abstract: Turkish and English en
dc.description xii, 52 leaves en
dc.description.abstract The use of quantum dots as fluorescent labels in bioimaging is the most intensively studied subject. The aim of this study is to elucidate locations of quantum dots and track their motions in real time through confocal microscopy and to evaluate influence of surface chemistry on diffusions of quantum dots in live cells. In this study, trioctylphosphine oxide (TOPO) capped CdSxSe1-x quantum dots were synthesized and then TOPO molecules were exchanged with 3-mercaptopropionic acid and N-acetyl-Lcysteine to make quantum dots water dispersible for cellular imaging. Human lung adenocarcinoma epithelial cells (A549) and human bronchial epithelial cells (BEAS-2B) were incubated 1 hour with CdSxSe1-x quantum dots with a concentration range of 1-10 g/mL. Localizations and real time motions of quantum dots were tracked by a spinning disc confocal microscope. The center of fluorescent spots of quantum dots was determined by 2D Gaussian fitting with a sub-pixel resolution (<100nm/pixel). The mean square displacements, diffusion coefficients and trajectories in which quantum dots made motions were analyzed by the software ImageJ with a plug in Spot Tracker. Confocal images showed that both MPA and NAC cappped quantum dots were observed in the cytoplasm of cells. Trajectories of quantum dots in cellular environment demonstrated that the quantum dots performed various types of motions in live cells. Unimodal, trimodal and multimodal distribution histograms of the diffusion coefficeints were obtained for different capping agents (MPA and NAC) and cell types (A549 and BEAS-2B). We conclude that the surface chemistry regulates the motion of the quantum dots in the cellular environment. en
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/4761
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject.lcsh Quantum dots en
dc.subject.lcsh Biochemistry en
dc.subject.lcsh Cells en
dc.title Synthesis, characterization of CdSxSe1-x quantum dots and evaluation of their real-time motions in live cells en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Ünal, Gülçin
gdc.description.department Chemistry en_US
gdc.description.publicationcategory Tez en_US
gdc.oaire.accepatencedate 2011-01-01
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0
gdc.oaire.influence 2.9837197E-9
gdc.oaire.influencealt 0
gdc.oaire.isgreen true
gdc.oaire.keywords Chemistry
gdc.oaire.keywords Biyoteknoloji
gdc.oaire.keywords Kimya
gdc.oaire.keywords Biotechnology
gdc.oaire.popularity 7.325455E-10
gdc.oaire.popularityalt 0.0
gdc.oaire.publicfunded false

Files

Collections