This is a Demo Server. Data inside this system is only for test purpose.
 

Dynamic frequent itemset mining based on Matrix Appriori algorithm

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

The frequent itemset mining algorithms discover the frequent itemsets from a database. When the database is updated, the frequent itemsets should be updated as well. However, running the frequent itemset mining algorithms with every update is inefficent. This is called the dynamic update problem of frequent itemsets and the solution is to devise an algorithm that can dynamically mine the frequent itemsets. In this study, a dynamic frequent itemset mining algorithm, which is called Dynamic Matrix Apriori, is proposed and explained. In addition, the proposed algorithm is compared using two datasets with the base algorithm Matrix Apriori which should be re-run when the database is updated.

Description

Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2012
Includes bibliographical references (leaves: 36-38)
Text in English; Abstract: Turkish and English
ix, 41 leaves

Keywords

Association rules, Computer Engineering and Computer Science and Control, Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals