This is a Demo Server. Data inside this system is only for test purpose.
 

Digital font generation using long short-term memory networks

No Thumbnail Available

Date

2019-07

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

Long Short-Term Memory (LSTM) Networks are powerful models to solve sequential problems in machine learning. Apart from their use on sequence classification, LSTMs are also used for sequence prediction. Predictive features of LSTMs have been used extensively to generate handwriting, music and several other types of sequences. Configuration and training of LSTM networks are relatively more arduous than non-sequential models, especially when input data is complex. In this research, the aim is to train LSTM networks and its different variations, use their generative features on a relatively obscure and complex type of sequences in machine learning; digital fonts. Controlled experiments have been performed to find the effects of different model parameters, input encodings or network architectures on learning font based sequences. All in all, in this document; the procedure of creating a dataset from digital fonts are provided, training strategies are demonstrated and the generative results are discussed.
Uzun Kısa Süreli Bellek Ağları, makine öğrenmesi alanında, dizisel veri içeren problemlerde başarıyla kullanılmaktadır. Dizi sınıflandırma alanındaki yaygın kullanımlarına ek olarak, Uzun Kısa Süreli Bellek Ağları'ndan, dizi öngörüsü alanında da yararlanılmaktadır. Bu ağların tahmin yetenekleri, el yazısı üretimi, müzik üretimi, ve diğer diziler üzerinde üretim için de geniş çapta tercih edilmektedir. Ancak, diğer makine öğrenmesi yöntemleri ile karşılaştırıldıklarında; Uzun Kısa Süreli Bellek Ağlarının konfigürasyonları ve eğitim aşamaları, eğitilecek veri karmaşıklaştıkça daha fazla zorlaşmaktadır. Bu araştırmanın hedefi, Uzun Kısa Süreli Bellek Ağlarının ve türevlerinin, göreceli olarak karmaşık bir veri olan sayısal yazıtipleri üzerinde denemektir. Bu amaçla kontrollü deneyler yapılmış, Uzun Kısa Süreli Bellek Ağlarının farklı konfigürasyonlardaki başarıları ölçülmüş ve karşılaştırılmıştır. Bu dökümanda, sayısal yazıtipleri kullanılarak bir makine öğrenmesi veri tabanı oluşturulma süreci, makine eğitimi aşamaları ve stratejileri açıklanmış, Sayısal yazıtipi üretim sonuçları gösterilmiş ve incelenmiştir.

Description

Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2019
Includes bibliographical references (leaves: 51-55)
Text in English; Abstract: Turkish and English

Keywords

Machine learning, Digital fonts, Sequence generation, Long short-term memory, Computer Engineering and Computer Science and Control, Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals