This is a Demo Server. Data inside this system is only for test purpose.
 

A compact finite difference method of lines for solving non-linear partial differential equations

dc.authorid 0000-0003-3503-7914 en_US
dc.contributor.advisor Tanoğlu, Gamze tr
dc.contributor.advisor Gürarslan, Gürhan tr
dc.contributor.author Ismoilov, Shodijon en_US
dc.date.accessioned 2023-11-13T09:56:16Z
dc.date.available 2023-11-13T09:56:16Z
dc.date.issued 2022-07 en_US
dc.department Mathematics en_US
dc.description Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2022 en_US
dc.description Includes bibliographical references (leaves. 45-48) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description.abstract In this thesis, an efficient numerical method is proposed for the numerical solution of the chemical reaction-diffusion model governed by a non-linear system of partial differential equations known as a Brusselator model. The method proposed is based on a combination of higher-order Compact Finite Difference schemes and stable time integrator known as an adaptive step-size Runge-Kutta method. The performance of adaptive step-size Runge-Kutta formula of fifth-order accurate in time and Compact Finite Difference scheme of sixth-order in space are investigated. The method is implemented to solve three test problems and reveals that the method is capable of achieving high efficiency, accuracy and reliability. The results obtained are sufficiently accurate compared to some available results in the literature. en_US
dc.description.abstract Bu tezde, kimyasal reaksiyon-difüzyon modeli olan ve Brusselator Modeli olarak da bilinen doğrusal olmayan kısmi diferansiyel denklem sisteminin çözümü için bir sayısal yöntem önerilmiştir. Önerilen yöntem yüksek mertebeden Kompakt Sonlu Fark şemaları ve kararlı zaman tümlev alıcısı, bilinen adıyla adaptif hesap adımlı Runge Kutta yönteminin kombinasyonuna dayanmaktadır. Uzayda altıncı mertebeden Kompakt Sonlu Fark Şeması ve zamanda ise beşinci mertebeden Adaptif Hesap Adımlı Runge-Kutta yönteminın performansı incelenmiştir. Yöntem üç adet test problemine uygulanmıştır ve yüksek hassasiyette (doğrulukta) çözümler elde edilmiştir. Aynı zamanda yöntemin verimli ve güvenilir olduğu ortaya çıkmıştır. Elde edilen sonuçlar literatürdeki diğer sonuçlarla uyuşmaktadır. tr
dc.format.extent viii, 59 leaves en_US
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/5763
dc.identifier.yoktezid 762977 en_US
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.relation.publicationcategory Tez tr
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Partial differential equations en_US
dc.subject Compact finite difference en_US
dc.subject Numerical solutions en_US
dc.title A compact finite difference method of lines for solving non-linear partial differential equations en_US
dc.title.alternative Doğrusal olmayan kısmi diferansiyel denklemlerin çözümü için bir kompakt sonlu farklar çizgiler yöntemi tr
dc.type Master Thesis en_US
dspace.entity.type Publication

Files

Collections