This is a Demo Server. Data inside this system is only for test purpose.
 

Design and fabrication of microfluidic device that allows investigation of distance dependent interactions of two different cell types

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Events

Abstract

The main studies of in this thesis, the mold and a microfluidic device are achieved by using SU-8 photoresist and PDMS polymer. Firstly, molds are obtained which are thickness ranging from 30 to 400 μm by using SU-8 photoresist with UV lithography technique and this molding will use for shaping polydimethylsiloxane (PDMS) polymer. Finally, PDMS molds combined with the glass surface to create a three dimensional reservoirs. Microfluidic device that allows investigation of distance dependent interactions, two factors are positioned at certain distances from each other and the microfluidic device is allowed to investigation of distance dependent interaction of two factors. There is an alternating width channel between two channels which have each of two factors. These three channels are separated from each other by colonnades, not by walls, therefore physical, chemical and biological interactions are possible between the factors. Necessary physical, chemical, and biological conditioning can be provided by the reservoirs which are neighbor of channels including factors. Microfluidic chip has a lot of advantages that are small liquid volumes (pL-μL), precise spatial & temporal control, successfully mimic the physiological context, highthroughput analysis, low fabrication costs; portable and safer therefore it facilitates us to refine our methods of analysis and development in cell biology investigations and determining the content of chemical samples.

Description

Thesis (Master)--Izmir Institute of Technology, Material Science and Engineering, Izmir, 2014
Includes bibliographical references (leaves: 43-45)
Text in English; Abstract: Turkish and English
xi, 45 leaves

Keywords

Microfluidics, Cells, Microfluidic device, Microfluidic chip, Biotechnology, Biyoteknoloji

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals