This is a Demo Server. Data inside this system is only for test purpose.
 

Totally weak supplemented modules

dc.contributor.advisor Alizade, Rafael en
dc.contributor.author Top, Serpil
dc.date.accessioned 2023-11-13T09:36:07Z
dc.date.available 2023-11-13T09:36:07Z
dc.date.issued 2007 en
dc.description Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2007 en
dc.description Includes bibliographical references (leaves: 54-55) en
dc.description Text in English; Abstract: Turkish and English en
dc.description vii, 55 leaves en
dc.description.abstract The main purpose of this thesis is to give a survey about some classes of modules including supplemented, weakly supplemented, totally supplemented and totally weak supplemented modules over commutative Noetherian rings, in particular over Dedekind domains based on results of H. Zöschinger, P. Rudlof and P. F. Smith. A module is weakly supplemented if and only if the factor of that module by a finite direct sum of its hollow submodules is weakly supplemented. A module is weakly supplemented (totally weak supplemented) if and only if the factor of it by a linearly compact submodule is weakly supplemented (totally weak supplemented). en
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/4810
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject.lcc QA247. T67 2007 en
dc.subject.lcsh Modules (Algebra) en
dc.subject.lcsh Rings (Algebra) en
dc.subject.lcsh Noetherian rings en
dc.subject.lcsh Dedekind rings en
dc.title Totally weak supplemented modules en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Top, Serpil
gdc.description.department Mathematics en_US
gdc.description.publicationcategory Tez en_US
gdc.oaire.accepatencedate 2007-01-01
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0
gdc.oaire.influence 2.9837197E-9
gdc.oaire.influencealt 0
gdc.oaire.isgreen true
gdc.oaire.keywords Matematik
gdc.oaire.keywords Supplemented modules
gdc.oaire.keywords Mathematics
gdc.oaire.popularity 4.949075E-10
gdc.oaire.popularityalt 0.0
gdc.oaire.publicfunded false

Files

Collections