This is a Demo Server. Data inside this system is only for test purpose.
 

Transfer matrix formulations and single variable shear deformation theory for crack detection in beam-like structures

dc.author.scopusid57189600933.0
dc.author.scopusid23471347800.0
dc.author.scopusid57209911484.0
dc.contributor.authorBozyigit,B.
dc.contributor.authorYesilce,Y.
dc.contributor.authorWahab,M.A.
dc.date.accessioned2023-11-18T10:07:34Z
dc.date.available2023-11-18T10:07:34Z
dc.date.issued2020
dc.departmentIzmir Institute of Technology İYTEen_US
dc.department-tempBozyigit B., Department of Civil Engineering, Dokuz Eylul University, Buca, Izmir, 35160, Turkey; Yesilce Y., Department of Civil Engineering, Dokuz Eylul University, Buca, Izmir, 35160, Turkey; Wahab M.A., CIRTech Institute, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam, Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, Technologiepark Zwijnaarde 903, Zwijnaarde, B-9052, Belgiumen_US
dc.description.abstractThis study aims to estimate crack location and crack length in damaged beam structures using transfer matrix formulations, which are based on analytical solutions of governing equations of motion. A single variable shear deformation theory (SVSDT) that considers parabolic shear stress distribution along beam cross-section is used, as well as, Timoshenko beam theory (TBT). The cracks are modelled using massless rotational springs that divide beams into segments. In the forward problem, natural frequencies of intact and cracked beam models are calculated for different crack length and location combinations. In the inverse approach, which is the main concern of this paper, the natural frequency values obtained from experimental studies, finite element simulations and analytical solutions are used for crack identification via plots of rotational spring flexibilities against crack location. The estimated crack length and crack location values are tabulated with actual data. Three different beam models that have free-free, fixed-free and simple-simple boundary conditions are considered in the numerical analyses. Copyright © 2020 Techno-Press, Ltd.en_US
dc.identifier.citation18
dc.identifier.doi10.12989/sem.2020.73.2.109
dc.identifier.endpage121en_US
dc.identifier.issn1225-4568
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85095738774
dc.identifier.scopusqualityN/A
dc.identifier.startpage109en_US
dc.identifier.urihttps://doi.org/10.12989/sem.2020.73.2.109
dc.identifier.urihttp://standard-demo.gcris.com/handle/123456789/7070
dc.identifier.volume73en_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.oaire.dateofacceptance2020-01-01
dc.oaire.impulse0
dc.oaire.influence2.9837197E-9
dc.oaire.influence_alt0
dc.oaire.is_greenfalse
dc.oaire.isindiamondjournalfalse
dc.oaire.mag_id3003958157
dc.oaire.openaccesscolorBronze
dc.oaire.popularity2.3516435E-9
dc.oaire.popularity_alt0.0
dc.oaire.publiclyfundedfalse
dc.opencitations.citationcount0
dc.plumx.mendeleyreaders3
dc.plumx.scopuscitations22
dc.publisherTechno-Pressen_US
dc.relation.ispartofStructural Engineering and Mechanicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount22
dc.sobiad.citationcount2
dc.sobiad.linkhttps://atif.sobiad.com/index.jsp?modul=makale-detay-meta&type=metadata&title=Transfer+matrix+formulations+and+single+variable+shear+deformation+theory+for+crack+detection+in+beam-like+structures&authorname=B.+Bozyigit&year=2020&magazinename=Structural+Engineering+and+Mechanics
dc.subjectCrack detectionen_US
dc.subjectSingle variable shear deformation theoryen_US
dc.subjectTransfer matrix formulationsen_US
dc.titleTransfer matrix formulations and single variable shear deformation theory for crack detection in beam-like structuresen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Collections