This is a Demo Server. Data inside this system is only for test purpose.
 

Single-photon generation from defects and manipulation with nanostructures

No Thumbnail Available

Date

2019-12

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Single-photon sources are essential components for several applications in the field of quantum information technologies, such as quantum cryptology and quantum computation. To this aim, efficient generation and detection of single-photons are the crucial to be achieved. Among single-photon sources that are extensively studied in the literature, defect centers in solid are very promising due to their room temperature operation and their stability. The aim of this thesis is to generate single photons at room temperature and control their optical properties by nanostructures. Single-photon emission from TMDCs originates from localized weakly bound excitons at cryogenic temperatures due to their small exciton binding energies. However, room temperature SP emission from WS2 can be obtained by creatingWO3 defects. In our study, room temperature emission from defects in WO3 was investigated. Density functional theory calculations showed that the source of the emission can be oxygen defects. Additionally, the emission was brightened by plasmonic gold nanoparticles. Furthermore, defects in two-dimensional (2D) hexagonal boron nitride (hBN) is offered as an efficient room temperature SPS. HBN is a wide bandgap 2D material, in which defect centers create discrete energy level to generate single photons. In our study, reversible single-photon emission control from defects in hBN was demonstrated by Förster-like resonance energy transfer between the single-photon emitter and a graphene layer. To this aim an ionic liquid based device structure was used.
Tek-foton kaynakları, kuantum kriptolojisi ve kuantum hesaplama gibi kuantum bilgi teknolojileri alanındaki çeşitli uygulamalar için temel bileşendir. Bu amaçla, tekfotonların verimli bir şekilde üretilmesi ve tespit edilmesi çok önemlidir. Literatürde yoğun olarak incelenen tek-foton kaynakları arasında, katı ortamlardaki kusur merkezleri, oda sıcaklığındaki çalışmaları ve stabiliteleri nedeniyle oldukça ümit vericidir. Bu tezin amacı oda sıcaklığında tek-foton üretmek ve optik özelliklerini nanoyapılarla kontrol etmektir. TMDC’lerden lokalize zayıf bağlanmış eksitonlardan kaynaklanan tek-foton emisyonu düşük eksiton bağlanma enerjileri nedeniyle krayojenik sıcaklıklarda gözlenir. Bununla birlikte, WS2’den oda sıcaklığında tek-foton emisyonu, WO3 kusurları yaratılarak elde edilebilir. Çalışmamızda, WO3’teki kusurlardan oda sıcaklığı emisyonu incelenmiştir. Yoğunluk fonksiyonel teorisi hesaplamaları, emisyon kaynağının oksijen kusuru olabileceğini göstermiştir. Ek olarak, emisyon şiddeti plazmonik altın nanoparçacıkları ile arttırıldığı gösterilmiştir. Ayrıca, iki boyutlu altıgen bor nitrürdeki (hBN) kusurlar, verimli bir oda sıcaklığı tek-foton kaynağıdır. HBN, kusur merkezlerinin tek-foton üretmek için kesikli enerji seviyesi oluşturduğu geniş bir bant aralığına sahip bir malzemedir. Çalışmamızda, hBN’deki kusurlardan tersinir olarak tek-foton ışıması kontrolü, kaynak ile bir grafen katmanı arasındaki Förster benzeri rezonans enerji transferi ile gösterilmiştir. Bu amaçla iyonik sıvı bazlı bir cihaz yapısı kullanılmıştır.

Description

Thesis (Doctoral)--Izmir Institute of Technology, Materials Science and Engineering, Izmir, 2019
Includes bibliographical references (leaves: 146-159)
Text in English; Abstract: Turkish and English

Keywords

Single-photon, Nanostructures, Graphene, Quantum dots, Quantum information technologies, Fizik ve Fizik Mühendisliği, Physics and Physics Engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals