This is a Demo Server. Data inside this system is only for test purpose.
 

Preparation and characterization of antimicrobial polymeric films for food packaging applications

No Thumbnail Available

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

32

OpenAIRE Views

26

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

In this study, cellulose acetate (CA) based antimicrobial packaging materials containing lysozyme as an antimicrobial additive were developed. In order to achieve appropriate controlled release of antimicrobial agent, the structure of the films were changed from highly asymmetric and porous to dense ones by modulating the composition of the initial casting solution. The effectiveness of the films were then tested through measurement of soluble and immobilized lysozyme activity, release kinetics and antimicrobial activity on selected microorganisms. The highest release rate, soluble lysozyme activity and resulting antimicrobial activity (on E.coli) was obtained with the film prepared from 5 % CA solution including 1.5 % lysozyme. Increasing CA content in the casting solution decreased the porosity of the films, hence, reduced the release rate, maximum released activities and the antimicrobial activities of the films. On the other hand, immobilized activities and the tensile strength of the films increased. The mechanical properties of the antimicrobial films cast with 5 % and 10 % CA were similar to those of lysozyme free CA films. However, significant reductions in tensile strength and elongation values were observed for the antimicrobial films prepared with 15 % CA. Differences in the release rates, soluble, immobilized and antimicrobial activities at porous and dense surfaces of the films suggest that different surfaces of CA films can be employed for antimicrobial packaging according to the targeted shelf-life of the food products. When the films made with 5 % CA were stored at 4 °C for a maximal period of 105 days, an increase in soluble lysozyme and antimicrobial activities of the films were observed. The results demonstrate that CA films prepared in this study show promising potential to achieve controlled release in antimicrobial packaging.

Description

Thesis (Master)--Izmir Institute of Technology, Chemical Engineering, Izmir, 2007
Includes bibliographical references (leaves: 70-73)
Text in English; Abstract: Turkish and English
xiii, 69 leaves

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals