This is a Demo Server. Data inside this system is only for test purpose.
 

Operator splitting methhods for differential equations

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

In this thesis, consistency and stability analysis of the traditional operator splitting methods are studied. We concentrate on how to improve the classical operator splitting methods via Zassenhaus product formula. In our approach, acceleration of the initial conditions and weighted polynomial ideas for each cases are individually handled and relevant algorithms are obtained. A new higher order operator splitting methods are proposed by the means of Zassenhaus product formula and rederive the consistency bound for traditional operator splitting methods. For unbounded operators, consistency analysis are proved by the C0-semigroup approach. We adapted the Von-Neumann stability analysis to operator splitting methods. General approach to use Von-Neumann stability analysis are discussed for the operator splitting methods. The proposed operator splitting methods and traditional operator splitting methods are applied to various ODE and PDE problems.

Description

Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2010
Includes bibliographical references (leaves: 86-88)
Text in English; Abstract: Turkish and English
ix, 100 leaves

Keywords

Matematik, Runge-Kutta Method, Mathematics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals