This is a Demo Server. Data inside this system is only for test purpose.
 

Homological objects of proper classes generated by simple modules

dc.contributor.advisor Büyükaşık, Engin
dc.contributor.author Durğun, Yılmaz
dc.date.accessioned 2023-11-16T12:04:36Z
dc.date.available 2023-11-16T12:04:36Z
dc.date.issued 2014
dc.description Thesis (Doctoral)--Izmir Institute of Technology, Mathematics, Izmir, 2014 en_US
dc.description Includes bibliographical references (leaves: 67-72) en_US
dc.description Text in English; Abstract: Turkish an English en_US
dc.description ix, 72 leaves en_US
dc.description.abstract The main purpose of this thesis is to study some classes of modules determined by neat, coneat and s-pure submodules. A right R-module M is called neat-flat (resp. coneat-flat) if the kernel of any epimorphism Y → M → 0 is neat (resp. coneat) in Y. A right R-module M is said to be absolutely s-pure if it is s-pure in every extension of it. If R is a commutative Noetherian ring, then R is C-ring if and only if coneat-flat modules are flat. A commutative ring R is perfect if and only if coneat-flat modules are projective. R is a right Σ -CS ring if and only if neat-flat right R-modules are projective. R is a right Kasch ring if and only if injective right R-modules are neat-flat if and only if the injective hull of every simple right R-module is neat-flat. If R is a right N-ring, then R is right Σ -CS ring if and only if pure-injective neat-flat right R-modules are projective if and only if absolutely s-pure left R-modules are injective and R is right perfect. A domain R is Dedekind if and only if absolutely s-pure modules are injective. It is proven that, for a commutative Noetherian ring R, (1) neat-flat modules are flat if and only if absolutely s-pure modules are absolutely pure if and only if R A × B, wherein A is QF-ring and B is hereditary; (2) neat-flat modules are absolutely s-pure if and only if absolutely s-pure modules are neat-flat if and only if R A × B, wherein A is QF-ring and B is Artinian with J2(B) = 0. en_US
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/6199
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject General module theory en_US
dc.subject Associative rings en_US
dc.subject Homological algebra en_US
dc.subject Proper classes en_US
dc.subject Injective modules en_US
dc.title Homological objects of proper classes generated by simple modules en_US
dc.title.alternative Basit modüller ile üretilen öz sınıfların homolojik nesneleri en_US
dc.type Doctoral Thesis en_US
dspace.entity.type Publication
gdc.description.department Mathematics en_US
gdc.description.publicationcategory Tez en_US
gdc.oaire.accepatencedate 2014-01-01
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0
gdc.oaire.influence 2.9837197E-9
gdc.oaire.influencealt 0
gdc.oaire.isgreen true
gdc.oaire.keywords Matematik
gdc.oaire.keywords Mathematics
gdc.oaire.popularity 1.0422565E-9
gdc.oaire.popularityalt 0.0
gdc.oaire.publicfunded false

Files

Collections