This is a Demo Server. Data inside this system is only for test purpose.
 

Homological objects of proper classes generated by simple modules

dc.contributor.advisorBüyükaşık, Engin
dc.contributor.authorDurğun, Yılmaz
dc.date.accessioned2023-11-16T12:04:36Z
dc.date.available2023-11-16T12:04:36Z
dc.date.issued2014
dc.departmentMathematicsen_US
dc.descriptionThesis (Doctoral)--Izmir Institute of Technology, Mathematics, Izmir, 2014en_US
dc.descriptionIncludes bibliographical references (leaves: 67-72)en_US
dc.descriptionText in English; Abstract: Turkish an Englishen_US
dc.descriptionix, 72 leavesen_US
dc.description.abstractThe main purpose of this thesis is to study some classes of modules determined by neat, coneat and s-pure submodules. A right R-module M is called neat-flat (resp. coneat-flat) if the kernel of any epimorphism Y → M → 0 is neat (resp. coneat) in Y. A right R-module M is said to be absolutely s-pure if it is s-pure in every extension of it. If R is a commutative Noetherian ring, then R is C-ring if and only if coneat-flat modules are flat. A commutative ring R is perfect if and only if coneat-flat modules are projective. R is a right Σ -CS ring if and only if neat-flat right R-modules are projective. R is a right Kasch ring if and only if injective right R-modules are neat-flat if and only if the injective hull of every simple right R-module is neat-flat. If R is a right N-ring, then R is right Σ -CS ring if and only if pure-injective neat-flat right R-modules are projective if and only if absolutely s-pure left R-modules are injective and R is right perfect. A domain R is Dedekind if and only if absolutely s-pure modules are injective. It is proven that, for a commutative Noetherian ring R, (1) neat-flat modules are flat if and only if absolutely s-pure modules are absolutely pure if and only if R A × B, wherein A is QF-ring and B is hereditary; (2) neat-flat modules are absolutely s-pure if and only if absolutely s-pure modules are neat-flat if and only if R A × B, wherein A is QF-ring and B is Artinian with J2(B) = 0.en_US
dc.identifier.urihttp://standard-demo.gcris.com/handle/123456789/6199
dc.language.isoenen_US
dc.oaire.dateofacceptance2014-01-01
dc.oaire.impulse0
dc.oaire.influence2.9837197E-9
dc.oaire.influence_alt0
dc.oaire.is_greentrue
dc.oaire.isindiamondjournalfalse
dc.oaire.keywordsMatematik
dc.oaire.keywordsMathematics
dc.oaire.popularity1.0422565E-9
dc.oaire.popularity_alt0.0
dc.oaire.publiclyfundedfalse
dc.publisherIzmir Institute of Technologyen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGeneral module theoryen_US
dc.subjectAssociative ringsen_US
dc.subjectHomological algebraen_US
dc.subjectProper classesen_US
dc.subjectInjective modulesen_US
dc.titleHomological objects of proper classes generated by simple modulesen_US
dc.title.alternativeBasit modüller ile üretilen öz sınıfların homolojik nesnelerien_US
dc.typeDoctoral Thesisen_US
dspace.entity.typePublication

Files

Collections