Homological objects of proper classes generated by simple modules
dc.contributor.advisor | Büyükaşık, Engin | |
dc.contributor.author | Durğun, Yılmaz | |
dc.date.accessioned | 2023-11-16T12:04:36Z | |
dc.date.available | 2023-11-16T12:04:36Z | |
dc.date.issued | 2014 | |
dc.department | Mathematics | en_US |
dc.description | Thesis (Doctoral)--Izmir Institute of Technology, Mathematics, Izmir, 2014 | en_US |
dc.description | Includes bibliographical references (leaves: 67-72) | en_US |
dc.description | Text in English; Abstract: Turkish an English | en_US |
dc.description | ix, 72 leaves | en_US |
dc.description.abstract | The main purpose of this thesis is to study some classes of modules determined by neat, coneat and s-pure submodules. A right R-module M is called neat-flat (resp. coneat-flat) if the kernel of any epimorphism Y → M → 0 is neat (resp. coneat) in Y. A right R-module M is said to be absolutely s-pure if it is s-pure in every extension of it. If R is a commutative Noetherian ring, then R is C-ring if and only if coneat-flat modules are flat. A commutative ring R is perfect if and only if coneat-flat modules are projective. R is a right Σ -CS ring if and only if neat-flat right R-modules are projective. R is a right Kasch ring if and only if injective right R-modules are neat-flat if and only if the injective hull of every simple right R-module is neat-flat. If R is a right N-ring, then R is right Σ -CS ring if and only if pure-injective neat-flat right R-modules are projective if and only if absolutely s-pure left R-modules are injective and R is right perfect. A domain R is Dedekind if and only if absolutely s-pure modules are injective. It is proven that, for a commutative Noetherian ring R, (1) neat-flat modules are flat if and only if absolutely s-pure modules are absolutely pure if and only if R A × B, wherein A is QF-ring and B is hereditary; (2) neat-flat modules are absolutely s-pure if and only if absolutely s-pure modules are neat-flat if and only if R A × B, wherein A is QF-ring and B is Artinian with J2(B) = 0. | en_US |
dc.identifier.uri | http://standard-demo.gcris.com/handle/123456789/6199 | |
dc.language.iso | en | en_US |
dc.oaire.dateofacceptance | 2014-01-01 | |
dc.oaire.impulse | 0 | |
dc.oaire.influence | 2.9837197E-9 | |
dc.oaire.influence_alt | 0 | |
dc.oaire.is_green | true | |
dc.oaire.isindiamondjournal | false | |
dc.oaire.keywords | Matematik | |
dc.oaire.keywords | Mathematics | |
dc.oaire.popularity | 1.0422565E-9 | |
dc.oaire.popularity_alt | 0.0 | |
dc.oaire.publiclyfunded | false | |
dc.publisher | Izmir Institute of Technology | en_US |
dc.relation.publicationcategory | Tez | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | General module theory | en_US |
dc.subject | Associative rings | en_US |
dc.subject | Homological algebra | en_US |
dc.subject | Proper classes | en_US |
dc.subject | Injective modules | en_US |
dc.title | Homological objects of proper classes generated by simple modules | en_US |
dc.title.alternative | Basit modüller ile üretilen öz sınıfların homolojik nesneleri | en_US |
dc.type | Doctoral Thesis | en_US |
dspace.entity.type | Publication |