This is a Demo Server. Data inside this system is only for test purpose.
 

Separation of stimulus-specific patterns in electroencephalography data using quasi-supervised learning

dc.contributor.advisor Karaçalı, Bilge en
dc.contributor.author Köktürk, Başak Esin
dc.date.accessioned 2023-11-13T09:22:57Z
dc.date.available 2023-11-13T09:22:57Z
dc.date.issued 2011 en
dc.description Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2011 en
dc.description Includes bibliographical references (leaves: 78-80) en
dc.description Text in English; Abstract: Turkish and English en
dc.description xii, 80 leaves en
dc.description.abstract In this study separation of the electroencephalography data recorded under different visual stimuli is investigated using the quasi-supervised learning algorithm. The quasi-supervised learning algorithm estimates the posterior probabilities associated with the different stimuli, thus identifying the EEG data samples that are exclusively specific to their respective stimuli directly and automatically from the data. The data used in this study contains 32 channels EEG recording under six different visual stimuli in random successive order. In our study, we have first constructed EEG profiles to represent instantaneous brain activity from the EEG data by various combinations of independent component analysis and the wavelet transform following data preprocessing. Then, we have applied the binary and M-ary quasi-supervised learning to identify condition-specific EEG profiles in different comparison scenarios. The results reveal that the quasi-supervised learning algorithm is successful in capturing the distinction between the samples. In addition, feature extraction using independent component analysis increased the performance of the quasi-supervised learning and the wavelet decomposition revealed the different frequency bands of the features, making more explicit the separation of the samples. The best results we obtained by combining the wavelet decomposition and the independent component analysis before the quasisupervised learning algorithm. en
dc.identifier.uri http://standard-demo.gcris.com/handle/123456789/4025
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject.lcsh Supervised learning (Machine learning) en
dc.subject.lcsh Electroencephalography en
dc.subject.lcsh Independent component analysis en
dc.subject.lcsh Wavelets (Mathematics) en
dc.title Separation of stimulus-specific patterns in electroencephalography data using quasi-supervised learning en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Köktürk, Başak Esin
gdc.description.department Electrical and Electronics Engineering en_US
gdc.description.publicationcategory Tez en_US
gdc.oaire.accepatencedate 2011-01-01
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0
gdc.oaire.influence 2.9837197E-9
gdc.oaire.influencealt 0
gdc.oaire.isgreen true
gdc.oaire.keywords Wavelet transforms
gdc.oaire.keywords Elektrik ve Elektronik Mühendisliği
gdc.oaire.keywords Wavelet theory
gdc.oaire.keywords Wavelet analysis
gdc.oaire.keywords Wavelet
gdc.oaire.keywords Electrical and Electronics Engineering
gdc.oaire.popularity 7.325455E-10
gdc.oaire.popularityalt 0.0
gdc.oaire.publicfunded false

Files

Collections