A learning-based demand classification service with using XGBoost in institutional area
No Thumbnail Available
Date
2019-07
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Izmir Institute of Technology
Open Access Color
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
This study, purposes to explain the development stages and methodology of data classification service that has a text-based adaptable programming interface. One of the successful classification algorithms, XGBoost, was preferred in the study. The dataset that is used in the study obtained by 'Digital Business Tracking Application' of a name anonymized company. The dataset is tested by using different classification algorithms and detailed performance evaluation was conducted. As a result, highest accuracy rate is obtained with 'Data Classification Service' which was developed by using XGBoost algorithm.
Bu çalışma, metin-tabanlı, uyarlanabilir bir programlama arayüzüne sahip; veri sınıflandırma servisi geliştirme aşamalarını ve çalışmada takip edilen metodolojiyi konu alır. Çalışmada, başarılı sınıflandırma algoritmalarından biri olan XGBoost tercih edilmiştir. Çalışmada kullandığımız veri kümesi, bilgilerini anonimleştirdiğimiz bir şirketin; 'Dijital İş Takip Uygulaması' aracılığı ile elde edilmiştir. Veri seti farklı sınıflandırma algoritmaları ile de test edilmiş ve detaylı performans değerlendirmeleri yapılmıştır. Sonuç olarak, testlerimizde en yüksek doğruluk oranı, XGBoost algoritması ile geliştirdiğimiz veri sınıflandırma servisi ile elde edildi.
Bu çalışma, metin-tabanlı, uyarlanabilir bir programlama arayüzüne sahip; veri sınıflandırma servisi geliştirme aşamalarını ve çalışmada takip edilen metodolojiyi konu alır. Çalışmada, başarılı sınıflandırma algoritmalarından biri olan XGBoost tercih edilmiştir. Çalışmada kullandığımız veri kümesi, bilgilerini anonimleştirdiğimiz bir şirketin; 'Dijital İş Takip Uygulaması' aracılığı ile elde edilmiştir. Veri seti farklı sınıflandırma algoritmaları ile de test edilmiş ve detaylı performans değerlendirmeleri yapılmıştır. Sonuç olarak, testlerimizde en yüksek doğruluk oranı, XGBoost algoritması ile geliştirdiğimiz veri sınıflandırma servisi ile elde edildi.
Description
Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2019
Includes bibliographical references (leaves: 48-49)
Text in English; Abstract: Turkish and English
Includes bibliographical references (leaves: 48-49)
Text in English; Abstract: Turkish and English
Keywords
XGBoost, Natural language processing, Supervised learning, Machine learning, Multinomial classification, Engineering Sciences, Mühendislik Bilimleri