This is a Demo Server. Data inside this system is only for test purpose.
 

Impacts of frequent itemset hiding algorithms on privacy preserving data mining

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Events

Abstract

The invincible growing of computer capabilities and collection of large amounts of data in recent years, make data mining a popular analysis tool. Association rules (frequent itemsets), classification and clustering are main methods used in data mining research. The first part of this thesis is implementation and comparison of two frequent itemset mining algorithms that work without candidate itemset generation: Matrix Apriori and FP-Growth. Comparison of these algorithms revealed that Matrix Apriori has higher performance with its faster data structure. One of the great challenges of data mining is finding hidden patterns without violating data owners. privacy. Privacy preserving data mining came into prominence as a solution. In the second study of the thesis, Matrix Apriori algorithm is modified and a frequent itemset hiding framework is developed. Four frequent itemset hiding algorithms are proposed such that: i) all versions work without pre-mining so privacy breech caused by the knowledge obtained by finding frequent itemsets is prevented in advance, ii) efficiency is increased since no pre-mining is required, iii) supports are found during hiding process and at the end sanitized dataset and frequent itemsets of this dataset are given as outputs so no post-mining is required, iv) the heuristics use pattern lengths rather than transaction lengths eliminating the possibility of distorting more valuable data.

Description

Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010
Includes bibliographical references (leaves: 54-58)
Text in English; Abstract: Turkish and English
x, 69 leaves

Keywords

Privacy, Data mining, Computer Engineering and Computer Science and Control, Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.